Skip to main content

Morpho-physiological response to vertically heterogeneous soil salinity of two glycophyte woody taxa, Salix matsudana x S. alba and Eucalyptus camaldulensis Dehnh

Abstract

Aims

Growth and physiology of Salix matsudana x S. alba and E. camaldulensis were evaluated in vertical saline gradients to test whether growth is determined by the mean salinity of rhizosphere, the average salinity weighed by the root number in each portion of the soil, the lowest or the highest rhizosphere salinity.

Methods

Saplings were grown in pots with an original irrigation system determining upper and lower soil layers with a combination of 4 treatments: control, moderate homogeneous salinity (Ho), and heterogeneous salinity, with high concentration of NaCl in the upper (HeU) or in the lower soil layer (HeL).

Results

E. camaldulensis saline treatments decreased Ψpre-dawn and Ψosmotic. HeU and HeL did not decrease stem growth (RVG), but HeL reduced root biomass in lower soil layer. Ho treatment reduced RVG (50%), increasing leaf senescence and altering some ions concentration (but not Na+). In Salix sp., Ho decreased Ψpre-dawn and chlorophyll content, increasing leaf senescence and Cl concentration resulting in low leaf biomass. HeL also decreased plant total biomass.

Conclusions

Lower concentration of salt homogeneously distributed in soil profile would have more effect than high salt concentration but restricted to one soil layer. The negative impact of high salinity would be higher if salts are in deeper than in upper soil layers. Salt tolerance thresholds would then depend more on the salt spatial distribution in the soil than on its average concentration along the rhizosphere.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Abbreviations

0% DLB:

Fully green leaves without apparent damage biomass

0% DLB/TLB:

Proportion between 0%DLB and TLB

1–50% DLB:

Leaves biomass with senescence symptoms in less than the 50% of their surface

1–50%DLB/TLB:

Proportion between 1 and 50% DLB and TLB

50–100% DLB:

Leaves biomass with senescence symptoms in more than the 50% of their surface

50–100%DLB/TLB:

Proportion between 50 and 100%DLB and TLB

C:

Control, pot irrigated with tap water

EC:

Electrical conductivity of the soil

HeL:

Salt gradient with higher EC in the lower layer

gs:

Stomatal conductance

HeU:

Salt gradient with higher EC in the upper layer

Ho:

Homogeneus salt distribution

L:

Lower soil layer of the pot

LRB:

Root biomass in the lower soil layer

LRB/TRB:

Proportion between LRB and TRB

RVG:

Relative volume growth

SB:

Stem biomass

ShB:

Shoot biomass, SB + TLB

ShB/TB:

Proportion between ShB and TB

TB:

Total biomass, ShB + TRB

TLB:

Total leaves biomass

TRB:

Total root biomass

U:

Upper soil layer of the pot

URB:

Root biomass in the upper soil layer

URB/TRB:

Proportion between URB and TRB

Ψpre-dawn :

Pre dawn shoot water potential

Ψosm :

Osmotic potential

References

  1. Argus RE, Colmer TD, Grierson PF (2015) Early physiological flood tolerance is followed by slow post-flooding root recovery in the dryland riparian tree Eucalyptus camaldulensis subsp. Refulgens Plant cell Env 38(6):1189–1199. doi:10.1111/pce.12473

    CAS  Article  Google Scholar 

  2. Bazihizina N, Barrett-Lennard E, Colmer TD (2009) Response to non-uniform salinity in the root zone of the halophyte Atriplex nummularia: growth, photosynthesis, water relations and tissue ion concentrations. Ann Bot 104:737–745

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  3. Bazihizina N, Barrett-Lennard E, Colmer TD (2012a) Plant growth and physiology under heterogeneous salinity. Plant Soil 354:1–19

    CAS  Article  Google Scholar 

  4. Bazihizina N, Barrett-Lennard E, Colmer TD (2012b) Plant responses to heterogeneous salinity: growth of the halophyte Atriplex nummularia is determined by the root-weighted mean salinity of the root zone. J Exp Bot 63:6347–6358

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  5. Bennett SJ, Barrett-Lennard EG, Colmer TD (2009) Salinity and waterlogging as constraints to saltland pasture production: a review. Agr. Ecosyst Environ 129:349–360

    Article  Google Scholar 

  6. Bingham FT, Garber MJ (1970) Zonal salinization of the root system with NaCl and boron in relation to growth and water uptake of corn plants. Soil Sci Soc Am Proc 34:122–126

    CAS  Article  Google Scholar 

  7. Bleby TM, Aucote M, Kennett-Smith AK, Walker GR, Schachtman DP (1997) Seasonal water use characteristics of tall wheatgrass (Agropyron elongatum (host) Beauv) in a saline environment. Plant Cell Environ 20:1361–1371

    Article  Google Scholar 

  8. Bonosi L, Ghelardini L, Weih M (2010) Growth responses of 15 Salix genotypes to temporary water stress are different from the responses to permanent water shortage. Trees 24:843–854

    Article  Google Scholar 

  9. Burgess SSO, Adams MA, Turner NC, Ong CHK (1998) The redistribution of soil water by tree root systems. Oecologia 115:306–311

    Article  PubMed  Google Scholar 

  10. Cha-um S, Kirdmanee C (2010) Effects of water stress induced by sodium chloride and mannitol on proline accumulation, photosynthetic abilities and growth characters of eucalyptus (Eucalyptus Camaldulensis Dehnh.) New For 40:349–360. doi:10.1007/s11056-010-9204-1

    Article  Google Scholar 

  11. Chen SL, Lia JK, Fritz E, Wang SS, Huttermann A (2002) Sodium and chloride distribution in roots and transport in three poplar genotypes under increasing NaCl stress. For Ecol Manag 168:217–230

    Article  Google Scholar 

  12. Doffo G, Monteoliva SE, Rodríguez ME, Luquez VMC (2017) Physiological responses to alternative flooding and drought stress episodes in two willow (Salix spp.) clones. Can J For Res 47(2):174–182

    Article  Google Scholar 

  13. Dong H, Kong X, Luo Z, Li W, Xin C (2011) Unequal salt distribution in the root zone increases growth and yield of cotton. Eur J Agron 33:285–292

    Article  Google Scholar 

  14. FAO (2011) FAO Landand plant nutrition management service http://www.fao.org/ag/agl/agll/spush

  15. Feikema PM, Sasse JM, Bandara GD (2012) Chloride content and biomass partitioning in eucalyptus hybrids grown on saline sites. New For 43:89–107. doi:10.1007/s11056-011-9268-6

    Article  Google Scholar 

  16. Flores P, Botella MA, Martinez V, Cerda A (2002) Response to salinity of tomato seedlings with a split root system: nitrate uptake and reduction. J Plant Nutr 25:177–187

    CAS  Article  Google Scholar 

  17. Flowers TJ, Colmer TD (2008) Salinity tolerance in halophytes. New Phytol 179:945–963

    CAS  Article  PubMed  Google Scholar 

  18. Fung LE, Wang SS, Altman A, Hutterman A (1998) Effect of NaCl on growth, photosynthesis, ion and water relations of four poplar genotypes. For Ecol Manag 107:135–146

    Article  Google Scholar 

  19. Ghassemi F, Jakeman AJ, Nix HA (1995) Salinization of land and water resources: human causes, extent, management and case studies. University of New South Wales Press Ltd, Canberra

    Google Scholar 

  20. Gomes S, Kozlowski (1980) Effects of flooding on Eucalyptus camaldulensis and Eucalyptus globulus seedlings. Oecologia (Berl) 46:139–142

    Article  Google Scholar 

  21. Hamed KB, Messedi D, Ranieri A, Abdelly C (2008) Diversity in the response of two potential halophytes (Batis maritime and Crithmum maritimum) to salt stress. In: Abdelly C, Ӧztürk M, Ashraf M, Grignon C (eds) Biosaline agriculture and high salinity tolerance. Birkhäuser Verlag AG, Basel, pp 71–80

    Chapter  Google Scholar 

  22. Hangs RD, Schoenau JJ, Van Rees KCJ, Steppuhn H (2011) Examining the salt tolerance of willow (Salix sp.) bioenergy species for use on salt-affected agricultural lands. Can. J. Plant Sci 91:509–517

    Google Scholar 

  23. Isla R, Guillén M, Aragüés R (2014) Response of five tree species to salinity and waterlogging: shoot and root biomass and relationships with leaf and root ion concentrations. Agrofor Syst 88:461–477. doi:10.1007/s10457-014-9705-6

    Article  Google Scholar 

  24. Ismael A, Takeda S, Nick P (2014) Life and death under salt stress: same players, different timing? J Exp Bot 65:2963–2979

    Article  Google Scholar 

  25. Jobbagy EG, Jackson R (2004) Groundwater use and salinization with grassland afforestation. Glob Chang Biol 10:1299–1312. doi:10.1111/j.1365-2486.2004.00806.x

    Article  Google Scholar 

  26. Kong X, Luo Z, Dong H, Eneji E, Li W (2012) Effects of non-uniform root zones salinity on water use, Na+ recirculation, and Na+ and H+ flux in cotton. J Exp Bot 63:2105–2116

    CAS  Article  PubMed  Google Scholar 

  27. Koushafara M, Khoshgoftarmanesh AH, Moezzi A, Mobli M (2011) Effect of dynamic unequal distribution of salt in the root environment on performance and Crop Per Drop (CPD) of hydroponic-grown tomato. Sci Hortic 131:1–5

    Article  Google Scholar 

  28. Läuchli A, Epstein E (1990) Plant response to saline and sodic conditions. In: Agricultural Salinity Assessment and Management. Tanji KK (ed). Mannuals and reports on Engineering Practices No 71. Ame Soc. Civ. Engin. New York, 112–137.

  29. Marcar N, Zohar Y, Guo J, Crawford D (2002) Effect of NaCl and high pH on seedling growth of 15 Eucalyptus camaldulensis Dehnh. Provenances. New For 23:193–206

    Article  Google Scholar 

  30. Martinoia E, Meyer S, De Angeli A, Nagy R (2012) Vacuolar transporters in their physiological context. Annu Rev Plant Biol 63:183–214

    CAS  Article  PubMed  Google Scholar 

  31. Mensforth LJ, Thourburn PJ, Tyerman SD, Walker GR (1994) Sources of water used by riparian Eucalyptus camaldulensis overlying highly saline groundwater. Oecologia 100:21–28

    Article  PubMed  Google Scholar 

  32. Merchan A, Callister A, Arndt S, Tausz M, Adams M (2007) Contrasting physiological responses of six eucalyptus species to water deficit. Ann Bot 100:1507–1515

    Article  Google Scholar 

  33. Messedi D, Labidi N, Grignon C, Abdelly C (2004) Limits imposed by salt to the growth of the halophyte Sesuvium Portulacastrum. J Plant Nutr Soil Sci 167:720–725

    CAS  Article  Google Scholar 

  34. Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Physiol 59:651–681

    CAS  Google Scholar 

  35. Nasim M, Qureshi RH, Aziz T, Saqib M, Nawaz S, Akhtar J, Haq MA, Talibsahi S (2009) Different eucalyptus species show different mechanisms of tolerance to salinity and salinity x hypoxia. J Plant Nutr 32:1427–1439

    CAS  Article  Google Scholar 

  36. Northey JE, Christen EW, Ayers JE, Jankowski J (2006) Occurrence and measurement of salinity stratification in shallow groundwater in the Murrumbidgee irrigation area, South-Eastern Australia. Agric Water Manag 81:23–40

    Article  Google Scholar 

  37. Nosetto MD, Jobbágy E, Tóth T, Jackson R (2008) Regional patterns and controls of ecosystem salinization with grassland afforestation along a rainfall gradient. Glob Biogechem Cycles 22:art.no. GB2015

  38. Pandey GK, Cheong YK, Kim KN, Grant JJ, Li LG, Hung W, D’Angelo C, Weini S, Kudla J, Luan S (2004) The calcium sensor calcineurin B-like 9 modulates abscisic acid sensitivity and biosynthesis in Arabidopsis. Plant Cell 16:1912–1924

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  39. Pardos JA (2007) Perspectiva fisiológica en la producción y mejora del Eucalipto (con énfasis en Eucalyptus globules Labill). Boletín del CIDEUS 3:7–55

    Google Scholar 

  40. Qiao G, Zhang X, Jiang J, Liu M, Han X, Yang H, Zhuo R (2013) Comparative Proteomic Analysis of Responses to Salt Stress in Chinese Willow (Salix matsudana Koidz). Plant Mol Biol Report. doi:10.1007/s11105-013-0689-6

    Google Scholar 

  41. Quinn LD, Straker KC, Guo J, Kim S, Thapa S, Kling G, Lee DK, Voigt TB (2015) Stress-tolerant feedstocks for sustainable bioenergy production on marginal land. Biol Res 8:1081–1100. doi:10.1007/s12155-014-9557-y

    CAS  Google Scholar 

  42. Quiñones Martorello AS, Fernández ME, Gyenge J, Laclau P, Colabelli M (2012) Rooting of different clones of Salix spp. to multiple stress conditions generated by salinity and anoxia. XXIX RAFV. Bs. As, p 226

  43. Quiñones Martorello AS, Gyenge J, Monterrubianesi G, Fernández ME (2014) Effect of waterlogging-drought sequential multiple stress on morphological and functional characteristics of two clones of Salix spp. and Eucalyptus camaldulensis Dhehn. XXX Latin American Congress of Plant Physiology. MDP. Bs. As., p 149

  44. Robbins CW, Wagenet RJ, Jurinak JJ (1980) A combined salt transport-chemical equilibrium model for calcareous and gypsiferous soil. Soil Sci Soc Am J 44:1191–1194

    CAS  Article  Google Scholar 

  45. Schenk HJ, Jackson RB (2002) Rooting depths, lateral root spreads and below-ground/above-ground allometries of plants in water-limited ecosystems. J Ecol 90(3):480–494 DOI:10.1046/j.1365-2745.2002.00682.

  46. Shalhevet J, Bernstein L (1968) Effects of vertically heterogeneous soil salinity on plant growth and water uptake. Soil Sci 106:85–93

    CAS  Article  Google Scholar 

  47. Shani U, Waisel Y, Eshel A, Xue S, Ziv G (1993) Responses to salinity of grapevine plants with split root systems. New Phytol 124:695–701

    CAS  Article  Google Scholar 

  48. Sixto H, González-Gonzalez BD, Molina-Rueda JJ, Garrido-Aranda A, Sanchez MM, López G, Gallardo F, Cañuellas I, Mounet F, Grima-Pettenati J, Cantón F (2016) Eucalyptus spp. and Populus spp. coping with salinity stress: an approach on growth, physiological and molecular features in the context of short rotation coppice (SRC). Trees. doi:10.1007/s00468-016-1420-7

    Google Scholar 

  49. Thorburn PJ, Walker GR (1994) Variations in stream water uptake by Eucalyptus Camaldulensis with differing access to stream water. Oecologia 100:293–301

    Article  PubMed  Google Scholar 

  50. Van der Moezel PG, Watson LE, Bell DT (1989) Gas exchange responses of two eucalyptus species to salinity and waterlogging. Tree Physiol 5:251–257

    CAS  Article  PubMed  Google Scholar 

  51. Wolf S, Hématy K, Höfte H (2012) Growth control and cell wall signaling in plants. Annu Rev Plant Biol 63:381–407

    CAS  Article  PubMed  Google Scholar 

  52. Woodward AJ, Bennett IJ (2005) The effect of salt stress and abscisic acid on proline production, chlorophyll content and growth of in vitro propagated shoots of Eucalyptus Camaldulensis. Plant Cell Tissue Organ Cult 82:189–200. doi:10.1007/s11240-005-0515-4

    CAS  Article  Google Scholar 

  53. Zalesny JA, Zalesny RS Jr, Wiese AH, Sexton B, Hall RB (2008) Sodium and chloride accumulation in leaf, woody, and root tissue of Populus after irrigation with landfill leachate. Environ Pollut 155:72–80

    CAS  Article  PubMed  Google Scholar 

  54. Zekri M, Parson LR (1990) Response of split-root sour orange seedling to NaCl and polyethylene glycol stresses. J Exp Bot 41:35–40

    CAS  Article  Google Scholar 

Download references

Acknowledgements

We thank Dr. F. Andrade (Crop Ecophysiology Laboratory of INTA EEA Balcarce, Argentina, CONICET Argentina) for his valuable comments on this manuscript, N. Pugliese for helping in the construction of the experimental system, S. Quiñones and A Gago for help during the sampling, and M. Colabelli for her support and advice during different stages of the study. This work is part of the doctoral studies of A.Q.M at the Facultad de Ciencias Agrarias, Universidad Nacional de Mar del Plata (Argentina), supported by a fellowship of the National Council of Scientific and Technological Research (CONICET, Argentina).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Adriana S. Quiñones Martorello.

Ethics declarations

Conflict of interest

None declared.

Funding

This work was funded by grants 300511–UCAR (Unidad Para el Cambio Rural) –MAGyP (Ministerio de Agricultura, Ganadería y Pesca) and PNFOR110473 - INTA (Instituto Nacional de Tecnología Agropecuaria), Argentina.

Additional information

Responsible Editor: Frans J.M Maathuis.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Quiñones Martorello, A.S., Gyenge, J.E. & Fernández, M.E. Morpho-physiological response to vertically heterogeneous soil salinity of two glycophyte woody taxa, Salix matsudana x S. alba and Eucalyptus camaldulensis Dehnh . Plant Soil 416, 343–360 (2017). https://doi.org/10.1007/s11104-017-3223-z

Download citation

Keywords

  • Soil salinity gradients
  • Eucalyptus camaldulensis
  • Salix matsudana x S. alba “NZ 26992”
  • Hydric conditions
  • Growth
  • Leaf ions concentration