Skip to main content
Log in

Fire-derived charcoal affects fine root vitality in a post-fire Gmelin larch forest: field evidence

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Background and aims

Fine roots are only a small part of total ecosystem biomass, but substantially contributing to soil carbon accumulation in boreal forests. Wildfires may influence fine root dynamics directly via heating and indirectly via interactions with wildfire-deposited charcoal. We tested if the presence of charcoal in a recently burned larch forest affected fine root vitality.

Methods

This study was stratified across vegetation type (understorey and overstorey), soil depth (upper and lower layers), and root diameter classes: fine (≥0.5 mm but <2 mm diameter), and very fine (diameter < 0.5 mm) in a recently surface-burned Gmelin larch (Larix gmelinii (Rupr.) Rupr.) forest in the Russian Far East.

Results

Charcoal content and fine root vitality were positively correlated for overstorey vegetation, but negatively correlated for understorey vegetation. On the other hand, total charcoal content did not significantly correlate with very fine root vitality, biomass or necromass.

Conclusions

Our study provides the first field evidence that fine root dynamics are influenced by fire-derived charcoal in frequently burned boreal forest. Furthermore, the effect of charcoal on fine root vitality depends on the vegetation type, root diameter, and soil depth, which indicates the necessity of complicated modeling of soil organic carbon derived from fine roots in post-fire boreal forests.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Amur Center for Hydrometeorology and Environmental Monitoring (2015) Meteorological characteristics of Zeya Meteorological Station between 1989 and 2011. Blagoveschensk

  • Anderson JM (1991) The effects of climate change on decomposition processes in grassland and coniferous forests. Ecol Appl 1:326–347. doi:10.2307/1941761

    Article  CAS  PubMed  Google Scholar 

  • Brundrett MC (2002) Coevolution of roots and mycorrhizas of land plants. New Phytol 154:275–304. doi:10.1046/j.1469-8137.2002.00397.x

    Article  Google Scholar 

  • Brunner I, Bakker MR, Björk RG et al (2013) Fine-root turnover rates of European forests revisited: an analysis of data from sequential coring and ingrowth cores. Plant Soil 362:357–372. doi:10.1007/s11104-012-1313-5

    Article  CAS  Google Scholar 

  • Bryanin SV, Sorokina OA (2015) The first data on the vertical REE distribution in taiga soils of the Russian far east. Dokl Earth Sci 464:1053–1057. doi:10.1134/S1028334X15100104

    Article  CAS  Google Scholar 

  • Certini G (2005) Effects of fire on properties of forest soils: a review. Oecologia 143:1–10. doi:10.1007/s00442-004-1788-8

    Article  PubMed  Google Scholar 

  • Clemensson-Lindell A, Persson H (1995) The effects of nitrogen addition and removal on Norway spruce fine-root vitality and distribution in three catchment areas at Gårdsjön. For Ecol Manag 71:123–131. doi:10.1016/0378-1127(94)06089-2

    Article  Google Scholar 

  • Clemmensen KE, Bahr A, Ovaskainen O, et al (2013) Roots and associated fungi drive long-term carbon sequestration in boreal forest. Science (80- ) 339:1615–1618. doi:10.1126/science.1231923

  • Day FP, Stover DB, Pagel AL et al (2006) Rapid root closure after fire limits fine root responses to elevated atmospheric CO2 in a scrub oak ecosystem in Central Florida, USA. Glob Chang Biol 12:1047–1053. doi:10.1111/j.1365-2486.2006.01148.x

    Article  Google Scholar 

  • DeLuca TH, Aplet GH (2008) Charcoal and carbon storage in forest soils of the Rocky Mountain west. Front Ecol Environ 6:18–24. doi:10.1890/070070

    Article  Google Scholar 

  • Deluca TH, Boisvenue C (2012) Boreal forest soil carbon: distribution, function and modelling. Forestry 85:161–184. doi:10.1093/forestry/cps003

    Article  Google Scholar 

  • Dixon RK, Solomon AM, Brown S, et al (1994) Carbon pools and flux of global forest ecosystems. Science (80- ) 263:185–190. doi:10.1126/science.263.5144.185

  • Finér L, Messier C, De Grandpré L (1997) Fine-root dynamics in mixed boreal conifer - broad-leafed forest stands at different successional stages after fire. Can J For Res 27:304–314. doi:10.1139/x96-170

    Article  Google Scholar 

  • Goldammer JG, Furyaev VV. (1996) Fire in ecosystems of boreal eurasia: ecological impacts and links to the global system. pp 1–20

  • Gundale MJ, DeLuca TH (2007) Charcoal effects on soil solution chemistry and growth of Koeleria macrantha in the ponderosa pine/Douglas-fir ecosystem. Biol Fertil Soils 43:303–311. doi:10.1007/s00374-006-0106-5

    Article  CAS  Google Scholar 

  • Hart SC, Classen AT, Wright RJ (2005) Long-term interval burning alters fine root and mycorrhizal dynamics in a ponderosa pine forest. J Appl Ecol 42:752–761. doi:10.1111/j.1365-2664.2005.01055.x

    Article  Google Scholar 

  • Högberg P, Nordgren A, Buchmann N et al (2001) Large-scale forest girdling shows that current photosynthesis drives soil respiration. Nature 411:789–792. doi:10.1038/35081058

    Article  PubMed  Google Scholar 

  • Holden SR, Berhe AA, Treseder KK (2015) Decreases in soil moisture and organic matter quality suppress microbial decomposition following a boreal forest fire. Soil Biol Biochem 87:1–9. doi:10.1016/j.soilbio.2015.04.005

    Article  CAS  Google Scholar 

  • IUSS Working Group WRB (2014) World Reference Base for Soil Resources 2014. International soil classification system for naming soils and creating legends for soil maps. World Soil Resources Reports No. 106. FAO, Rome

  • Janos DP, Scott J, Bowman DMJS (2008) Temporal and spatial variation of fine roots in a northern Australian Eucalyptus Tetrodonta Savanna. J Trop Ecol 24:177–188. doi:10.1017/S0266467408004860

    Article  Google Scholar 

  • Kätterer T, Bolinder MA, Andrén O et al (2011) Roots contribute more to refractory soil organic matter than above-ground crop residues, as revealed by a long-term field experiment. Agric Ecosyst Environ 141:184–192. doi:10.1016/j.agee.2011.02.029

    Article  Google Scholar 

  • Leuschner C, Wiens M, Harteveld M et al (2006) Patterns of fine root mass and distribution along a disturbance gradient in a tropical montane forest, Central Sulawesi (Indonesia). Plant Soil 283:163–174. doi:10.1007/s11104-006-6638-5

    Article  CAS  Google Scholar 

  • Ma C, Zhang W, Wu M et al (2013) Effect of aboveground intervention on fine root mass, production, and turnover rate in a Chinese cork oak (Quercus variabilis Blume) forest. Plant Soil 368:201–214. doi:10.1007/s11104-012-1512-0

    Article  CAS  Google Scholar 

  • Mabuhay JA, Nakagoshi N, Horikoshi T (2003) Microbial biomass and abundance after forest fire in pine forests in Japan. Ecol Res 18:431–441

    Article  Google Scholar 

  • Majdi H, Truus L, Johansson U et al (2008) Effects of slash retention and wood ash addition on fine root biomass and production and fungal mycelium in a Norway spruce stand in SW Sweden. For Ecol Manag 255:2109–2117. doi:10.1016/j.foreco.2007.12.017

    Article  Google Scholar 

  • Makita N, Hirano Y, Mizoguchi T et al (2011) Very fine roots respond to soil depth: biomass allocation, morphology, and physiology in a broad-leaved temperate forest. Ecol Res 26:95–104. doi:10.1007/s11284-010-0764-5

    Article  Google Scholar 

  • Makita N, Pumpanen J, Köster K, Berninger F (2016) Changes in very fine root respiration and morphology with time since last fire in a boreal forest. Plant Soil 402:303–316. doi:10.1007/s11104-016-2801-9

    Article  CAS  Google Scholar 

  • Makoto K, Nemilostiv YP, Zyryanova OA et al (2007) Regeneration after forest fires in mixed conifer broad-leaved forests of the Amur region in far eastern Russia: the relationship between species specific traits against fire and recent fire regimes. Eur J For Res 10–1:51–58

    Google Scholar 

  • Makoto K, Tamai Y, Kim YS, Koike T (2010) Buried charcoal layer and ectomycorrhizae cooperatively promote the growth of Larix gmelinii seedlings. Plant Soil 327:143–152. doi:10.1007/s11104-009-0040-z

    Article  CAS  Google Scholar 

  • Makoto K, Choi D, Hashidoko Y, Koike T (2011a) The growth of Larix gmelinii seedlings as affected by charcoal produced at two different temperatures. Biol Fertil Soils 47:467–472. doi:10.1007/s00374-010-0518-0

    Article  CAS  Google Scholar 

  • Makoto K, Hirobe M, DeLuca TH et al (2011b) Effects of fire-derived charcoal on soil properties and seedling regeneration in a recently burned Larix gmelinii/Pinus sylvestris forest. J Soils Sediments 11:1317–1322. doi:10.1007/s11368-011-0424-6

    Article  CAS  Google Scholar 

  • Makoto K, Shibata H, Kim YS et al (2012) Contribution of charcoal to short-term nutrient dynamics after surface fire in the humus layer of a dwarf bamboo-dominated forest. Biol Fertil Soils 48:569–577. doi:10.1007/s00374-011-0657-y

    Article  CAS  Google Scholar 

  • McCormack ML, Dickie IA, Eissenstat DM et al (2015) Redefining fine roots improves understanding of below-ground contributions to terrestrial biosphere processes. New Phytol 207:505–518. doi:10.1111/nph.13363

    Article  PubMed  Google Scholar 

  • Mei L, Gu JC, Zhang ZW, Wang ZQ (2009) Responses of fine root mass, length, production and turnover to soil nitrogen fertilization in Larix gmelinii and Fraxinus mandshurica forests in northeastern China. J For Res 15:194–201. doi:10.1007/s10310-009-0176-y

    Article  Google Scholar 

  • Metcalfe DB, Meir P, Aragao L et al (2008) The effects of water availability on root growth and morphology in an Amazon rainforest. Plant Soil 311:189–199. doi:10.1007/s11104-008-9670-9

    Article  CAS  Google Scholar 

  • Neary DG, Klopatek CC, DeBano LF, Ffolliott PF (1999) Fire effects on belowground sustainability: a review and synthesis. For Ecol Manag 122:51–71. doi:10.1016/S0378-1127(99)00032-8

    Article  Google Scholar 

  • Palviainen M, Finér L (2015) Decomposition and nutrient release from Norway spruce coarse roots and stumps – a 40-year chronosequence study. For Ecol Manag 358:1–11. doi:10.1016/j.foreco.2015.08.036

    Article  Google Scholar 

  • Persson HÅ (1983) The distribution and productivity of fine roots in boreal forests. Plant Soil 71:87–101. doi:10.1007/BF02182644

    Article  Google Scholar 

  • Persson H, Ahlström K (2002) Fine-root response to nitrogen supply in nitrogen manipulated Norway spruce catchment areas. For Ecol Manag 168:29–41. doi:10.1016/S0378-1127(01)00726-5

    Article  Google Scholar 

  • Persson HÅ, Stadenberg I (2009) Spatial distribution of fine-roots in boreal forests in eastern Sweden. Plant Soil 318:1–14. doi:10.1007/s11104-008-9811-1

    Article  CAS  Google Scholar 

  • Persson HÅ, Stadenberg I (2010) Fine root dynamics in a Norway spruce forest (Picea abies (L.) karst) in eastern Sweden. Plant Soil 330:329–344. doi:10.1007/s11104-009-0206-8

    Article  CAS  Google Scholar 

  • Pingree MRA, Deluca EE, Schwartz DT, Deluca TH (2016) Adsorption capacity of wildfire-produced charcoal from Pacific Northwest forests. Geoderma 264:71–80. doi:10.1016/j.geoderma.2016.07.016

  • Pluchon N, Gundale MJ, Nilsson MC et al (2014) Stimulation of boreal tree seedling growth by wood-derived charcoal: effects of charcoal properties, seedling species and soil fertility. Funct Ecol 28:766–775. doi:10.1111/1365-2435.12221

    Article  Google Scholar 

  • Preston CM, Schmidt MWI (2006) Black (pyrogenic) carbon: a synthesis of current knowledge and uncertainties with special consideration of boreal regions. Biogeosciences 3:397–420. doi:10.5194/bg-3-397-2006

    Article  CAS  Google Scholar 

  • Procopchuk VF, Bryanin SV (2007) Ecological stability of brown raw-humus taiga soils in relation to anthropogenic influences in northern part of Amur region. Eur J For Res 10–1:85–88

    Google Scholar 

  • R Development Core Team (2016) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

  • Richter AK, Walthert L, Frossard E, Brunner I (2007) Does low soil base saturation affect fine root properties of European beech (Fagus sylvatica L.)? Plant Soil 298:69–79. doi:10.1007/s11104-007-9338-x

    Article  CAS  Google Scholar 

  • Robinson D, Hodge A, Fitter F (2003) Constraints on the form and function of root systems. Root Ecol 168:1–31

  • Santín C, Doerr SH (2016) Fire effects on soils: the human dimension. Philos Trans R Soc B Biol Sci 371:20150171. doi:10.1098/rstb.2015.0171

    Article  Google Scholar 

  • Singh S, Amiro BD, Quideau SA (2008) Effects of forest floor organic layer and root biomass on soil respiration following boreal forest fire. Can J For Res 38:647–655. doi:10.1139/X07-200

    Article  Google Scholar 

  • Smirnova E, Bergeron Y, Brais S, Granström A (2008) Postfire root distribution of scots pine in relation to fire behaviour. Can J For Res 38:353–362. doi:10.1139/X07-127

    Article  Google Scholar 

  • Sun T, Dong L, Mao Z, Li Y (2015) Fine root dynamics of trees and understorey vegetation in a chronosequence of Betula platyphylla stands. For Ecol Manag 346:1–9. doi:10.1016/j.foreco.2015.02.035

    Article  Google Scholar 

  • Swezy DM, Agee JK (1991) Prescribed-fire effects on fine-root and tree mortality in old-growth ponderosa pine. Can J For Res 21:626–634. doi:10.1139/x91-086

    Article  Google Scholar 

  • Wang C, Gower ST, Wang Y et al (2001) The influence of fire on carbon distribution and net primary production of boreal Larix gmelinii forests in North-Eastern China. Glob Chang Biol 7:719–730. doi:10.1046/j.1354-1013.2001.00441.x

    Article  Google Scholar 

  • Wang H, Liu S, Wang J et al (2013) Dynamics and speciation of organic carbon during decomposition of leaf litter and fine roots in four subtropical plantations of China. For Ecol Manag 300:43–52. doi:10.1016/j.foreco.2012.12.015

    Article  Google Scholar 

  • Wardle DA, Zackrisson O, Nilsson M-C (1998) The charcoal effect in boreal forests: mechanisms and ecological consequences. Oecologia 115:419–426. doi:10.1007/s004420050536

    Article  CAS  PubMed  Google Scholar 

  • Xiao CW, Sang WG, Wang RZ (2008) Fine root dynamics and turnover rate in an Asia white birch forest of Donglingshan Mountain, China. For Ecol Manag 255:765–773. doi:10.1016/j.foreco.2007.09.062

    Article  Google Scholar 

  • Yan X, Cai Z (2008) Number of soil profiles needed to give a reliable overall estimate of soil organic carbon storage using profile carbon density data. Soil Sci Plant Nutr 54:819–825. doi:10.1111/j.1747-0765.2008.00305.x

    Article  CAS  Google Scholar 

  • Yuan ZY, Chen HYH (2013) Effects of disturbance on fine root dynamics in the boreal forests of northern Ontario, Canada. Ecosystems 16:467–477. doi:10.1007/s10021-012-9623-2

    Article  Google Scholar 

  • Zackrisson O, Nilsson M-C, Wardle DA (1996) Key ecological function of charcoal from wildfire in the boreal forest. Oikos 77:10. doi:10.2307/3545580

    Article  Google Scholar 

Download references

Acknowledgements

We thank Dr. A.A. Sorokin and Dr. K. Takagi for their support during the study. Authors thanks to staff of Zeysky State nature Reserve especially Mr. Lisovskii V.V. for invaluable help during field investigation. We express our gratitude to Ms. Abramova E.R. for her assistance in sorting roots, mass measurements and data analysis. We also express great thanks to Ms. Veklich T.N. and Ms. Darman G.F. for field vegetation description. Great thanks for Ms. M.R.A. Pingree for her valuable comments on the early version of the manuscript.

Author information

Authors and Affiliations

Authors

Additional information

Responsible Editor: Zucong Cai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bryanin, S.V., Makoto, K. Fire-derived charcoal affects fine root vitality in a post-fire Gmelin larch forest: field evidence. Plant Soil 416, 409–418 (2017). https://doi.org/10.1007/s11104-017-3217-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-017-3217-x

Keywords

Navigation