Skip to main content
Log in

Gluconacetobacter diazotrophicus exopolysaccharide protects bacterial cells against oxidative stress in vitro and during rice plant colonization

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Background and aims

The endophytic bacterium Gluconacetobacter diazotrophicus produces exopolysaccharides (EPS) that are required for biofilm formation and colonization of rice seedlings. Here we investigated whether EPS produced by the G. diazotrophicus strain Pal5 protects the bacteria against free radicals.

Methods

EPS-mediated protection of Pal5 cells against oxidative damage was evaluated by cell counting and fluorescence microscopy. Rice seedling inoculation studies were performed to investigate the antioxidant activity of EPS during plant colonization. The expression of three bacterial antioxidant genes during plant colonization was also monitored.

Results

Free radical activities were reduced in vitro by the addition of Pal5 EPS. An EPS-defective Pal5 mutant was hypersensitive to H2O2 and addition of purified EPS reversed this phenotype. Addition of EPS at the inoculation time increased colonization efficiency by the mutant strain and a similar effect was observed after addition of the antioxidant ascorbic acid. qPCR profiles of sodA, gor, and katE gene expression in the mutant confirmed the role of EPS during the initial plant colonization.

Conclusions

Our results indicated that EPS produced by G. diazotrophicus protects the bacterial cells against oxidative stress in vitro and during colonization of rice plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Alquéres S, Meneses C, Rouws L, Rothballer M, Baldani I, Schmid M, Hartman A (2013) The bacterial superoxide dismutase and glutathione reductase are crucial for endophytic colonization of rice roots by Gluconacetobacter diazotrophicus Pal5. Mol Plant-Microbe Interact 26(8):937–945. doi:10.1094/MPMI-12-12-0286-R

    Article  PubMed  Google Scholar 

  • Alvarez B, Radi R (2003) Peroxynitrite reactivity with aminoacids and proteins. Amino Acids 25:295–311. doi:10.1007/s00726-003-0018-8

    Article  CAS  PubMed  Google Scholar 

  • Apostol I, Heinstein PF, Low PS (1989) Rapid stimulation of an oxidative burst during elicitation of cultured plant cells. Plant Physiol 99:109–116. doi:10.1104/pp.90.1.109

    Article  Google Scholar 

  • Aruoma OI (1998) Free radicals oxidative stress, and antioxidants in human health and disease. J Am Oil Chem Soc 75(2):199–212. doi:10.1007/s11746-998-0032-9

    Article  CAS  Google Scholar 

  • Balsanelli E, Serrato RV, Baura VA, Sassaki G, Yates MG, Rigo LU, Pedrosa FO, Souza EM, Monteiro RA (2010) Herbaspirillum seropedicae rfbB and rfbC genes are required for maize colonization. Environ Microbiol 12(8):2233–2244. doi:10.1111/j.1462-2920.2010.02187.x

    CAS  PubMed  Google Scholar 

  • Balsanelli E, Baura VA, Pedrosa FO, Souza EM, Monteiro RA (2014) Exopolysaccharide biosynthesis enables mature biofilm formation on abiotic surfaces by Herbaspirillum seropedicae. PLoS One 9(10):e110392. doi:10.1371/journal.pone.0110392

    Article  PubMed  PubMed Central  Google Scholar 

  • Battisti L, Lara JC, Leigh JA (1992) Specific oligosaccharide form of the Rhizobium meliloti exopolysaccharide promotes nodule invasion in alfalfa. Proc Natl Acad Sci U S A 89:5625–5629. doi:10.1073/pnas.89.12.5625

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bertalan M, Albano R, De Pádua V, Rouws L, Rojas C, Hemerly A, Teixeira K, Schwab S, Araujo J, Oliveira A, França L, Magalhães V, Alquéres S, Cardoso A, Almeida W, Loureiro MM, Nogueira E, Cidade D, Oliveira D, Simão T, Macedo J, Valadão A, Dreschsel M, Freitas F, Vidal M, Guedes H, Rodrigues E, Meneses C, Brioso P, Pozzer L, Figueiredo D, Montano H, Junior J, De Souza Filho G, Martin Quintana Flores V, Ferreira B, Branco A, Gonzalez P, Guillobel H, Lemos M, Seibel L, Macedo J, Alves-Ferreira M, Sachetto-Martins G, Coelho A, Santos E, Amaral G, Neves A, Pacheco AB, Carvalho D, Lery L, Bisch P, Rössle SC, Urményi T, Rael Pereira A, Silva R, Rondinelli E, Von Krüger W, Martins O, Baldani JI, Ferreira PC (2009) Complete genome sequence of the sugarcane nitrogen-fixing endophyte Gluconacetobacter diazotrophicus PAL5. BMC Genomics 10:1–17. doi:10.1186/1471-2164-10-450

    Article  Google Scholar 

  • Bordiec S, Paquis S, Lacroix H, Dhondt S, Ait Barka E, Kauffmann S, Jeandet P, Mazeyrat-Gourbeyre F, Clément C, Baillieul F, Dorey S (2011) Comparative analysis of defence responses induced by the endophytic plant growth-promoting rhizobacterium Burkholderia phytofirmans strain PsJN and the non-host bacterium Pseudomonas syringae pv. pisi in grapevine cell suspensions. J Exp Bot 62:595–603. doi:10.1093/jxb/erq291

    Article  CAS  PubMed  Google Scholar 

  • Cavalcante VA, Döbereiner J (1988) A new acid tolerant nitrogen-fixing bacterium associated with sugarcane. Plant Soil 108:23–31. doi:10.1007/BF02370096

    Article  Google Scholar 

  • De Souza ALSR, De Souza SA, De Oliveira MVV, Ferraz TM, Figueiredo FAMMA, Da Silva ND, Rangel PL, Panisset CRS, Olivares FL, Campostrini E, De Souza Filho GA (2016) Endophytic colonization of Arabidopsis thaliana by Gluconacetobacter diazotrophicus and its effect on plant growth promotion, plant physiology, and activation of plant defense. Plant Soil 399(1):257–270. doi:10.1007/s11104-015-2672-5

    Article  Google Scholar 

  • Dong X (1998) SA, JA, ethylene, and disease resistance in plants. Curr Opin Plant Biol 1(4):316–323. doi:10.1016/1369-5266(88)80053-0

    Article  CAS  PubMed  Google Scholar 

  • Dow JM, Newman AA, von Roepenack E (2000) The induction and modulation of plant defense responses by bacterial lipopolysaccharides. Annu Rev Phytopathol 38:241–261. doi:10.1146/annurev.phyto.38.1.241

    Article  CAS  PubMed  Google Scholar 

  • Draper HH, Hadley M (1990) Malondialdehyde determination as index of lipid peroxidation. In: Packer L, Glazer AN (eds) Methods in enzymology, vol 186. Academic, New York, pp 421–431

    Google Scholar 

  • Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 28(3):350–356. doi:10.1021/ac60111a017

    Article  CAS  Google Scholar 

  • Elasri MO, Miller RV (1999) Study of the response of a biofilm bacterial community to UV radiation. Appl Environ Microbiol 65(5):2025–2031

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fenton HJH (1894) Oxidation of tartaric acid in presence of iron. J Chem Soc 65:899–910. doi:10.1039/CT8946500899

    Article  CAS  Google Scholar 

  • Fitriyanto NA, Nakamura M, Muto S, Kato K, Yabe T, Iwama T, Kawai K, Pertiwiningrum A (2011) Ce3+-induced exopolysaccharide production by Bradyrhizobium sp. MAFF211645. J Biosci Bioeng 111:146–152. doi:10.1016/j.jbiosc.2010.09.008

    Article  CAS  PubMed  Google Scholar 

  • Guo S, Mao W, Han Y, Zhang X, Yang C, Chen Y, ChenY XJ, Li H, Qi X, Xu J (2010) Structural characteristics and antioxidant activities of the extracellular polysaccharides produced by marine bacterium Edwardsiella tarda. Bioresour Technol 101(12):4729–4732. doi:10.1016/j.biortech.2010.01.125

    Article  CAS  PubMed  Google Scholar 

  • Hallack LF, Passos DS, Mattos KA, Agrellos OA, Jones C, Mendonca-Previato L, Previato JO, Todeschini AR (2010) Structural elucidation of the repeat unit in highly branched acidic exopolysaccharides produced by nitrogen fixing Burkholderia. Glycobiology 20:338–347. doi:10.1093/glycob/cwp181

    Article  CAS  PubMed  Google Scholar 

  • Halliwell B (1991) Reactive oxygen species in living systems: source, biochemistry, and role in human disease. Am J Med 91:14–22. doi:10.1016/0002-9343(91)90279-7

    Article  Google Scholar 

  • Hoagland DR, Arnon DI (1950) The water-culture method for growing plants without soil. California Agricultural Experiment Station—University of California, Berkeley

    Google Scholar 

  • Holmes A, Birse L, Jackson RW, Holden NJ (2014) An optimized method for the extraction of bacterial mRNA from plant roots infected with Escherichia coli O157:H7. Front Microbiol 5:286. doi:10.3389/fmicb.2014.00286

    PubMed  PubMed Central  Google Scholar 

  • Hurek T, Reinhold-Hurek B (2003) Azoarcus sp. strain BH72 as a model for nitrogen-fixing grass endophytes. J Biotechnol 106:169–178. doi:10.1016/j.jbiotec.2003.07.010

    Article  CAS  PubMed  Google Scholar 

  • James EK, Reis VM, Olivares FL, Baldani JI, Döbereiner J (1994) Infection and colonization of sugarcane and other graminaceous plants by Acetobacter diazotrophicus. J Exp Bot 45:757–766. doi:10.1080/07352689891304195

    Article  CAS  Google Scholar 

  • James EK, Olivares FL, Oliveira ALM, Reis FB Jr, Silva LG, Reis VM (2001) Further observations on the interaction between sugarcane and Gluconacetobacter diazotrophicus under laboratory and greenhouse conditions. J Exp Bot 52:747–760. doi:10.1093/jexbot/52.357.747

    Article  CAS  PubMed  Google Scholar 

  • Janczarek M, Rachwal K, Marzec A, Grzadziel J, Palusinska-Szysz M (2015) Signal molecules and cell-surface components involved in early stages of the legume-Rhizobium interactions. Appl Soil Ecol 85:94–113. doi:10.1016/j.apsoil.2014.08.010

    Article  Google Scholar 

  • Jaszek M, Janczarek M, Kuczyński K, Piersiak T, Grzywnowicz K (2014) The response of the Rhizobium leguminosarum bv. trifolii wild-type and exopolysaccharide-deficient mutants to oxidative stress. Plant Soil 376:75–94. doi:10.1007/s11104-013-1959-7

    Article  CAS  Google Scholar 

  • Jiménez-Salgado T, Fuentes-Ramírez LE, Tapia-Hernández A, Mascarua-Esparza MA, Martinez-Romero E, Caballero-Mellado J (1997) Coffea arabica L., a new host plant for Acetobacter diazotrophicus and isolation of other nitrogen-fixing Acetobacteria. Appl Environ Microbiol 63:3676–3683

    PubMed  PubMed Central  Google Scholar 

  • Kemp BP, Horne J, Bryant A, Cooper RM (2004) Xanthomonas axonopodis pv. manihotis gumD gene is essential for EPS production and pathogenicity and enhances epiphytic survival on cassava (Manihot esculenta). Physiol Mol Plant Pathol 64(4):209–218. doi:10.1016/j.pmpp.2004.08.007

    Article  CAS  Google Scholar 

  • Kodali VP, Sen R (2008) Antioxidant and free radical scavenging activities of an exopolysaccharide from a probiotic bacterium. Biotechnol J 3(2):245–251. doi:10.1002/biot.200700208

    Article  CAS  PubMed  Google Scholar 

  • Kojo K, Yaeno T, Kusumi K, Matsumura H, Fujisawa S, Terauchi R, Iba K (2006) Regulatory mechanisms of ROI generation are affected by rice spl mutations. Plant Cell Physiol 47(8):1035–1044. doi:10.1093/pcp/pcj074

    Article  CAS  PubMed  Google Scholar 

  • Kumari A, Das P, Parida AK, Agarwal PK (2015) Proteomics, metabolomics, and ionomics perspectives of salinity tolerance in halophyte. Front Plan Sci 6:537. doi:10.3389/fpls.2015.00537

    Google Scholar 

  • Lamb C, Dixon RA (1997) The oxidative burst in plant disease resistance. Annu Rev Plant Physiol Plant Mol Biol 48:251–275. doi:10.1146/annurev.arplant.48.1.251

    Article  CAS  PubMed  Google Scholar 

  • Liu F, Ooi VCE, Chang ST (1997) Free radical scavenging activities of mushroom polysaccharide extracts. Life Sci 60(10):763–771. doi:10.1016/S0024-3205(97)00004-0

    Article  CAS  PubMed  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25(4):402–408. doi:10.1006/meth.2001.1262

    Article  CAS  PubMed  Google Scholar 

  • Mah TFC, O’Toole GA (2001) Mechanisms of biofilm resistance to antimicrobial agents. Trends Microbiol 9(1):34–39. doi:10.1016/S0966-842X(00)01913-2

    Article  CAS  PubMed  Google Scholar 

  • Matsukawa R, Dubin E, Kishimoto K, Masaki P, Masuda K, Takeuchi T, Chihara M, Yamamoto Y, Niki E, Karube I (1997) A comparison of screening methods for antioxidant activity in seaweeds. J Appl Phycol 9:29–35. doi:10.1023/A:1007935218120

    Article  CAS  Google Scholar 

  • Meneses CHSG, Rouws LFM, Araújo JLS, Vidal MS, Baldani JI (2011) Exopolysaccharide production is required for biofilm formation and plant colonization by the nitrogen-fixing endophyte Gluconacetobacter diazotrophicus. Mol Plant-Microbe Interact 24(12):1448–1458. doi:10.1094/MPMI-05-11-0127

    Article  CAS  PubMed  Google Scholar 

  • Mitra S, Mukherjee A, Wiley-Kalil A, Das S, Owen H, Reddy PM, Ané J-M, James EK, Gyaneshwar P (2016) A rhamnose-deficient lipopolysaccharide mutant of Rhizobium sp. IRBG74 is defective in root colonization and beneficial interactions with its flooding-tolerant hosts Sesbania cannabina and wetland rice. J Exp Bot 67(19):5869–5884. doi:10.1093/jxb/erw354

    Article  CAS  PubMed  Google Scholar 

  • Morris J, Gonzalez JE (2009) The novel genes emmABC are associated with exopolysaccharide production, motility, stress adaptation, and symbiosis in Sinorhizobium meliloti. J Bacteriol 191:5890–5900. doi:10.1128/JB.00760-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Muthukumarasamy R, Kang UG, Park KD, Jeon WT, Park CY, Cho YS, Kwon SW, Song J, Roh DH, Revathi G (2007) Enumeration, isolation and identification of diazotrophs from Korean wetland rice varieties grown with long-term application of N and compost and their short-term inoculation effect on rice plants. J Appl Microbiol 102:981–991. doi:10.1111/j.1365-2672.2006.03157.x

    CAS  PubMed  Google Scholar 

  • Nathan C, Shiloh MU (2000) Reactive oxygen and nitrogen intermediates in the relationship between mammalian hosts and microbial pathogens. Proc Natl Acad Sci U S A 97:8841–8848. doi:10.1073/pnas.97.16.8841

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nishikimi M, Rao A, Yagi K (1972) The occurrence of superoxide anion in the reaction of reduced phenazine methosulphate and molecular oxygen. Biochem Biophys Res Commun 46:849–854. doi:10.1016/S0006-291X(72)80218-3

    Article  CAS  PubMed  Google Scholar 

  • Oyaizu M (1986) Studies on products of browning reactions: antioxidative activities of products of browning reaction prepared from glucosamine. Jpn J Nutr Diet 103:413–419. doi:10.5264/eiyogakuzashi.44.307

    Google Scholar 

  • Paula MA, Reis V, Döbereiner J (1991) Interactions of Glomus clarum with Acetobacter diazotrophicus in infection of sweet potato (Ipomoea batatas), sugarcane (Saccharum spp.), and sweet sorghum (Sorghum vulgare). Biol Fertil Soils 11:111–115. doi:10.1007/BF00336374

    Article  Google Scholar 

  • Prieto P, Pineda M, Aguilar M (1999) Spectrophotometric quantitation of antioxidant capacity through the formation of a phosphomolybdenum complex: specific application to the determination of Vitamin E. Anal Biochem 269:337–341. doi:10.1006/abio.1999.4019

    Article  CAS  PubMed  Google Scholar 

  • Ramu SK, Peng HM, Cook DR (2002) Nod factor induction of reactive oxygen species production is correlated with expression of the early nodulin gene rip1 in Medicago truncatula. Mol Plant Microbe Interact 15:522–528. doi:10.1094/MPMI.2002.15.6.522

    Article  CAS  PubMed  Google Scholar 

  • Reis VM, Olivares FL, Dobereiner J (1994) Improved methodology for isolation of Acetobacter diazotrophicus and confirmation of its endophytic habitat. World J Microbiol Biotechnol 10(4):401–405. doi:10.1007/BF00144460

    Article  CAS  PubMed  Google Scholar 

  • Rinaudi LV, Giordano W (2010) An integrated view of biofilm formation in rhizobia. FEMS Microbiol Lett 304:1–11. doi:10.1111/j.1574-6968.2009.01840.x

    Article  CAS  PubMed  Google Scholar 

  • Rodrigues Neto J, Malavolta Júnior VA, Victor O (1986) Meio simples para o isolamento e cultivo de Xanthomonas campestris pv. citri tipo B. Summa Phytopathol 1(12):16–20

    Google Scholar 

  • Rouws LFM, Meneses CHSG, Guedes HV, Vidal MS, Baldani JI, Schwab S (2010) Monitoring the colonization of sugarcane and rice plants by the endophytic diazotrophic bacterium Gluconacetobacter diazotrophicus marked with gfp and gusA reporter genes. Lett Appl Microbiol 51:325–330. doi:10.1111/j.1472-765X.2010.02899.x

    Article  CAS  PubMed  Google Scholar 

  • Rubio MC, James EK, Clemente MR, Bucciarelli B, Fedorova M, Vance CP, Becana M (2004) Localization of superoxide dismutases and hydrogen peroxide in legume root nodules. Mol Plant-Microbe Interact 17(12):1294–1305. doi:10.1094/MPMI.2004.17.12.1294

    Article  CAS  PubMed  Google Scholar 

  • Rubio MC, Becana M, Kanematsu S, Ushimaru T, James EK (2009) Immunolocalization of antioxidant enzymes in high-pressure frozen root and stem nodules of Sesbania rostrata. New Phytol 183(2):395–407. doi:10.1111/j.1469-8137.2009.02866.x

    Article  CAS  PubMed  Google Scholar 

  • Sabra W, Zeng AP, Lunsdorf H, Deckwer WD (2000) Effect of oxygen on formation and structure of Azotobacter vinelandii alginate and its role in protecting nitrogenase. Appl Environ Microbiol 66(9):4037–4044. doi:10.1128/AEM.66.9.4037-4044.2000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Salvemini D, Ischiropoulos H, Cuzzocrea S (2003) Roles of nitric oxide and superoxide in inflammation. In: Winyard PG, Willoughby DA (eds) Methods in molecular biology, inflammation protocols, vol 225. Humana Press Inc., Totowa, pp 291–303

    Chapter  Google Scholar 

  • Serrato RV, Meneses CHSG, Vidal MS, Santana-Filho AP, Iacomini M, Sassaki GL, Baldani JI (2013) Structural studies of an exopolysaccharide produced by Gluconacetobacter diazotrophicus Pal5. Carbohydr Polym 98:1153–1159. doi:10.1016/j.carbpol.2013.07.025

    Article  CAS  PubMed  Google Scholar 

  • Silipo A, Erbs G, Shinya T, Dow JM, Parrilli M, Lanzetta R, Shibuya N, Newman MA, Molinaro A (2009) Glyco-conjugates as elicitors or suppressors of plant innate immunity. Glycobiology 20(4):406–419. doi:10.1093/glycob/cwp201

    Article  PubMed  Google Scholar 

  • Skorupska A, Janczarek M, Marczak M, Mazur A, Kröl J (2006) Rhizobial exopolysaccharides: genetic control and symbiotic functions. Microb Cell Factories 5:7. doi:10.1186/1475-2859-5-7

    Article  Google Scholar 

  • Smirnoff N, Cumbes QJ (1989) Hydroxyl radical scavenging activity of compatible solutes. Phytochemistry 28(4):1057–1060. doi:10.1016/0031-9422(89)80182-7

    Article  CAS  Google Scholar 

  • Tanaka A, Christensen MJ, Takemoto D, Park P, Scott B (2006) Reactive oxygen species play a role in regulating a fungus-perennial ryegrass mutualistic interaction. Plant Cell 18(4):1052–1066. doi:10.1105/tpc.105.039263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tapia-Hernández A, Bustillos-Cristales MR, Jiménez-Salgado T, Caballero-Mellado J, Fuentes-Ramírez LE (2000) Natural endophytic occurrence of Gluconacetobacter diazotrophicus in pineapple plants. Microb Ecol 39:49–55. doi:10.1007/s002489900190

    Article  PubMed  Google Scholar 

  • Tsiapali E, Whaley S, Kalbfleisch J, Ensley HE, Browder IW, Williams DL (2001) Glucans exhibit weak antioxidant activity, but stimulate macrophage free radical activity. Free Radic Biol Med 30:393–402. doi:10.1016/S0891-5849(00)00485-8

    Article  CAS  PubMed  Google Scholar 

  • Valverde A, Castro-Sowinski S, Lerner A, Fibach S, Matan O, Burdman S, Okon Y (2008) Exopolysaccharide production and cell aggregation in Azospirillum brasilense. In: Dakora FD, Chimphango SBM, Valentine AJ, Elmerich C, Newton WE (eds) Biological nitrogen fixation: towards poverty alleviation through sustainable agriculture. Springer Science, New York, pp 319–320

    Chapter  Google Scholar 

  • Verhagen BWM, Trotel-Aziz P, Couderchet M, Höfte M, Aziz A (2010) Pseudomonas spp.-induced systemic resistance to Botrytis cinerea is associated with induction and priming of defence responses in grapevine. J Exp Bot 61:249–260. doi:10.1093/jxb/erp295

    Article  CAS  PubMed  Google Scholar 

  • Vinagre F, Vargas C, Schwarcz KD, Japiassu J, Nogueira EM, Baldani JI, Ferreira PCG, Hemerly AS (2006) SHR5: a novel plant receptor kinase involved in plant-N2 fixing endophytic bacteria association. J Exp Bot 57:559–569. doi:10.1093/jxb/erj041

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Yu HQ (2007) Biosynthesis of polyhydroxybutyrate (PHB) and extracellular polymeric substances (EPS) by Ralstonia eutropha ATCC 17699 in batch cultures. Appl Microbiol Biotechnol 75(4):871–878. doi:10.1007/s00253-007-0870-7

    Article  CAS  PubMed  Google Scholar 

  • Wang H, Liu YM, Qui ZM, Wang SY, Liu SX, Li X, Wang HJ, Xia XC (2013) An overview on natural polysaccharides with antioxidant properties. Curr Med Chem 20:2899–2913. doi:10.2174/0929867311320230006

    Article  CAS  PubMed  Google Scholar 

  • Wei Y, Li Z, Hu Y, Xu Z (2003) Inhibition of mouse liver lipid peroxidation by high molecular weight phlorotannins from Sargassum kjellmanianum. J Appl Phycol 15:507–511. doi:10.1023/B:JAPH.0000004344.45697.0f

    Article  CAS  Google Scholar 

  • Zhao ZH, Zheng XW, Fang F (2013) Effects of Ganoderma lucidum polysaccharides on exercise-induced fatigue in mice. Asian J Anim Vet Adv 8(3):511–518. doi:10.3923/ajava.2013.511.518

    Article  Google Scholar 

  • Zhou YC, Zheng RL (1991) Phenolic compounds and analog as superoxide anion scavengers and antioxidants. Biochem Pharmacol 42:1177–1179. doi:10.1016/0006-2952(91)90251-Y

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Instituto Nacional de Ciência e Tecnologia da Fixação Biológica de Nitrogênio (INCT-FBN) and UNIVERSAL—Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) n. 483547/2013-1. Talyta T. Gonçalves and José I. Baldani thank Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) and CNPq for fellowship support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Meneses.

Additional information

Responsible Editor: Euan K. James.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meneses, C., Gonçalves, T., Alquéres, S. et al. Gluconacetobacter diazotrophicus exopolysaccharide protects bacterial cells against oxidative stress in vitro and during rice plant colonization. Plant Soil 416, 133–147 (2017). https://doi.org/10.1007/s11104-017-3201-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-017-3201-5

Keywords

Navigation