Plant and Soil

, Volume 416, Issue 1–2, pp 149–163

Differential elemental uptake in three pseudo-metallophyte C4 grasses in situ in the eastern USA

  • Cédric Gonneau
  • Sanjay K. Mohanty
  • Lee H. Dietterich
  • Wei-Ting Hwang
  • Jane K. Willenbring
  • Brenda B. Casper
Regular Article


Background and aims

Elemental uptake in serpentine floras in eastern North America is largely unknown. The objective of this study was to determine major and trace element concentrations in soil and leaves of three native pseudo-metallophyte C4 grasses in situ at five sites with three very different soil types, including three serpentine sites, in eastern USA.


Pseudo-total and extractible concentrations of 15 elements were measured and correlated from the soils and leaves of three species at the five sites.


Element concentrations in soils of pseudo-metallophytes varied up to five orders of magnitude. Soils from metalliferous sites exhibited higher concentrations of their characteristic elements than non-metalliferous. In metallicolous populations, elemental concentrations depended on the element. Concentrations of major elements (Ca, Mg, K) in leaves were lower than typical toxicity thresholds, whereas concentrations of Zn were higher.


In grasses, species can maintain relatively low metal concentrations in their leaves even when soil concentrations are richer. However, in highly Zn-contaminated soil, we found evidence of a threshold concentration above which Zn uptake increases drastically. Finally, absence of main characteristics of serpentine soil at one site indicated the importance of soil survey and restoration to maintain serpentinophytes communities and avoid soil encroachment.


C4 grass; accumulation; excluder Serpentine Calamine Pseudo-metallophytes 

Supplementary material

11104_2017_3198_MOESM1_ESM.xlsx (1.1 mb)
ESM 1(XLSX 1130 kb)


  1. Alexander EB (2009) Serpentine Geoecology of the eastern and southeastern margins of North America. Northeast Nat 16:223–252. doi:10.1656/045.016.0518 CrossRefGoogle Scholar
  2. Ali H, Khan E, Sajad MA (2013) Phytoremediation of heavy metals—concepts and applications. Chemosphere 91:869–881. doi:10.1016/j.chemosphere.2013.01.075 CrossRefPubMedGoogle Scholar
  3. Alloway BJ (2013) Sources of Heavy Metals and Metalloids in Soils. In: Alloway BJ (ed) Heavy Metals in Soils. Springer Netherlands, pp 11–50Google Scholar
  4. Anacker BL, Whittall JB, Goldberg EE, Harrison SP (2011) Origins and consequences of serpentine endemism in the California Flora. Evolution 65:365–376. doi:10.1111/j.1558-5646.2010.01114.x CrossRefPubMedGoogle Scholar
  5. Arabas KB (2000) Spatial and temporal relationships among fire frequency, vegetation, and soil depth in an eastern north American serpentine barren. J Torrey Bot Soc 127:51–65. doi:10.2307/3088747 CrossRefGoogle Scholar
  6. Astrup T, Boddum JK, Christensen TH (1999) Lead distribution and mobility in a soil embankment used as a bullet stop at a shooting range. J Soil Contam 8:653–665CrossRefGoogle Scholar
  7. Baker AJM (1981) Accumulators and excluders-strategies in the response of plants to heavy metals. J Plant Nutr 3:643–654. doi:10.1080/01904168109362867 CrossRefGoogle Scholar
  8. Baker AJM (1987) Metal Tolerance. New Phytol 106:93–111. doi:10.1111/j.1469-8137.1987.tb04685.x CrossRefGoogle Scholar
  9. Baker AJM, Brooks R (1989) Terrestrial higher plants which hyperaccumulate metallic elements. A review of their distribution, ecology and phytochemistry. Biorecovery 1:81–126Google Scholar
  10. Baker AJ, Ernst WH, van der Ent A et al (2010) Metallophytes: the unique biological resource, its ecology and conservational status in Europe, Central Africa and Latin America. Ecol Ind Pollut Camb Univ Press Camb:7–40Google Scholar
  11. Bani A, Echevarria G, Sulçe S et al (2007) In-situ phytoextraction of Ni by a native population of Alyssum murale on an ultramafic site (Albania). Plant Soil 293:79–89. doi:10.1007/s11104-007-9245-1 CrossRefGoogle Scholar
  12. Bennett JR, Kaufman CA, Koch I et al (2007) Ecological risk assessment of lead contamination at rifle and pistol ranges using techniques to account for site characteristics. Sci Total Environ 374:91–101. doi:10.1016/j.scitotenv.2006.12.040 CrossRefPubMedGoogle Scholar
  13. Bert V, Bonnin I, Saumitou-Laprade P et al (2002) Do Arabidopsis Halleri from nonmetallicolous populations accumulate zinc and cadmium more effectively than those from metallicolous populations? New Phytol 155:47–57. doi:10.1046/j.1469-8137.2002.00432.x CrossRefGoogle Scholar
  14. Bever JD, Morton JB, Antonovics J, Schultz PA (1996) Host-dependent sporulation and species diversity of arbuscular mycorrhizal fungi in a mown grassland. J Ecol 84:71–82. doi:10.2307/2261701 CrossRefGoogle Scholar
  15. Boufford DE, Kartesz JT, Shi S, Zhou R (2014) Packera Serpenticola (Asteraceae; Senecioneae), a new species from North Carolina, U. S. a. Syst Bot 39:1027–1030. doi:10.1600/036364414X682274 CrossRefGoogle Scholar
  16. Boyd R, Martens S (1998) Nickel hyperaccumulation by Thlaspi montanum var. montanum (Brassicaceae): a constitutive trait. Am J Bot 85:259CrossRefPubMedGoogle Scholar
  17. Brady KU, Kruckeberg AR, Bradshaw HD (2005) Evolutionary ecology of plant adaptation to serpentine soils. Annu Rev Ecol Evol Syst 36:243–266CrossRefGoogle Scholar
  18. Broadhurst CL, Chaney RL, Davis AP et al (2015) Growth and cadmium phytoextraction by Swiss chard, maize, Rice, Noccaea Caerulescens, and Alyssum murale in pH adjusted Biosolids amended soils. Int J Phytoremediation 17:25–39. doi:10.1080/15226514.2013.828015 CrossRefPubMedGoogle Scholar
  19. Broadley MR, Willey NJ, Wilkins JC et al (2001) Phylogenetic variation in heavy metal accumulation in angiosperms. New Phytol 152:9–27. doi:10.1046/j.0028-646x.2001.00238.x CrossRefGoogle Scholar
  20. Broadley MR, White PJ, Hammond JP et al (2007) Zinc in plants. New Phytol 173:677–702CrossRefPubMedGoogle Scholar
  21. Brown SL, Chaney RL, Angle JS, Baker AJM (1994) Phytoremediation potential of Thlaspi Caerulescens and bladder Campion for zinc- and cadmium-contaminated soil. J Environ Qual 23:1151. doi:10.2134/jeq1994.00472425002300060004x CrossRefGoogle Scholar
  22. Burgess J, Szlavecz K, Rajakaruna N et al (2015a) Vegetation dynamics and mesophication in response to conifer encroachment within an ultramafic system. Aust J Bot 63:292–307. doi:10.1071/BT14241 CrossRefGoogle Scholar
  23. Burgess J, Szlavecz K, Rajakaruna N, Swan C (2015b) Ecotypic differentiation of mid-Atlantic Quercus species in response to ultramafic soils. Aust J Bot 63:308–323CrossRefGoogle Scholar
  24. Burt R, Wilson MA, Mays MD, Lee CW (2003) Major and trace elements of selected Pedons in the USA. J Environ Qual 32:2109. doi:10.2134/jeq2003.2109 CrossRefPubMedGoogle Scholar
  25. Chaney RL, Malik M, Li YM et al (1997) Phytoremediation of soil metals. Curr Opin Biotechnol 8:279–284CrossRefPubMedGoogle Scholar
  26. Clemens S (2001) Molecular mechanisms of plant metal tolerance and homeostasis. Planta 212:475–486CrossRefPubMedGoogle Scholar
  27. Cumming JR, Kelly CN (2007) Pinus virginiana Invasion influences soils and arbuscular mycorrhizae of a serpentine grassland. J Torrey Bot Soc 134:63–73. doi:10.3159/1095-5674(2007)134[63:PVIISA]2.0.CO;2 CrossRefGoogle Scholar
  28. Cunningham SD, Berti WR, Huang JW (1995) Phytoremediation of contaminated soils. Trends Biotechnol 13:393–397CrossRefGoogle Scholar
  29. Curie C, Cassin G, Couch D et al (2009) Metal movement within the plant: contribution of nicotianamine and yellow stripe 1-like transporters. Ann Bot 103:1–11. doi:10.1093/aob/mcn207 CrossRefPubMedGoogle Scholar
  30. DeHart KS, Meindl GA, Bain DJ, Ashman T-L (2014) Elemental composition of serpentine plants depends on habitat affinity and organ type. J Plant Nutr Soil Sci 177:851–859. doi:10.1002/jpln.201300485 CrossRefGoogle Scholar
  31. Devez A, Achterberg E, Gledhill M (2009) Metal ion-binding properties of phytochelatins and related ligands. Met Ions Life Sci 5:441–481CrossRefGoogle Scholar
  32. Doherty JH, Ji B, Casper BB (2008) Testing nickel tolerance of Sorghastrum nutans and its associated soil microbial community from serpentine and prairie soils. Environ Pollut 151:593–598. doi:10.1016/j.envpol.2007.04.002 CrossRefPubMedGoogle Scholar
  33. Doubková P, Suda J, Sudová R (2011) Arbuscular mycorrhizal symbiosis on serpentine soils: the effect of native fungal communities on different Knautia arvensis ecotypes. Plant Soil 345:325–338. doi:10.1007/s11104-011-0785-z CrossRefGoogle Scholar
  34. Escarré J, Lefèbvre C, Raboyeau S et al (2011) Heavy metal concentration survey in soils and plants of the les Malines Mining District (southern France): implications for soil restoration. Water Air Soil Pollut 216:485–504. doi:10.1007/s11270-010-0547-1 CrossRefGoogle Scholar
  35. Faucon M-P, Stradic SL, Boisson S et al (2016) Implication of plant-soil relationships for conservation and restoration of copper-cobalt ecosystems. Plant Soil 403:153–165. doi:10.1007/s11104-015-2745-5 CrossRefGoogle Scholar
  36. Ferster B, Leppo BR, Swartz MT et al (2008) Lepidoptera of fort Indiantown gap National Guard Training Center, Annville, Pennsylvania. Northeast Nat 15:141–148. doi:10.1656/1092-6194(2008)15[141:LOFIGN]2.0.CO;2 CrossRefGoogle Scholar
  37. Gao S, Luo T-C, Zhang B-R et al (1998) Chemical composition of the continental crust as revealed by studies in East China. Geochim Cosmochim Acta 62:1959–1975CrossRefGoogle Scholar
  38. Glassman SI, Casper BB (2012) Biotic contexts alter metal sequestration and AMF effects on plant growth in soils polluted with heavy metals. Ecology 93:1550–1559. doi:10.1890/10-2135.1 CrossRefPubMedGoogle Scholar
  39. Goldschmidt VM (1937) The principles of distribution of chemical elements in minerals and rocks. The seventh Hugo Müller Lecture, delivered before the Chemical Society on March 17th, 1937. J Chem Soc Resumed 655–673. doi:10.1039/JR9370000655
  40. Gonneau C, Genevois N, Frérot H et al (2014) Variation of trace metal accumulation, major nutrient uptake and growth parameters and their correlations in 22 populations of Noccaea Caerulescens. Plant Soil 384:271–287CrossRefGoogle Scholar
  41. Güsewell S (2004) N : P ratios in terrestrial plants: variation and functional significance. New Phytol 164:243–266. doi:10.1111/j.1469-8137.2004.01192.x CrossRefGoogle Scholar
  42. Gustafson DJ, Halfacre AC, Anderson RC (2008) Practical seed source selection for restoration projects in an urban setting: tallgrass prairie, serpentine barrens, and coastal habitat examples. Urban Habitats 5:7–18Google Scholar
  43. Haegele E (2011) Unionville Serpentine Barrens: Analyzing the Relationship Between Soil Profiles and Forest Succession Rate.Google Scholar
  44. Hammer D, Keller C (2003) Phytoextraction of Cd and Zn with Thlaspi Caerulescens in field trials. Soil Use Manag 19:144–149. doi:10.1111/j.1475-2743.2003.tb00295.x CrossRefGoogle Scholar
  45. Harris T, Rajakaruna N (2009) Adiantum viridimontanum, Aspidotis densa, Minuartia marcescens, and Symphyotrichum rhiannon: additional serpentine endemics from eastern North America. Northeast Nat 16:111–120. doi:10.1656/045.016.0509 CrossRefGoogle Scholar
  46. Hoekstra JM, Boucher TM, Ricketts TH, Roberts C (2005) Confronting a biome crisis: global disparities of habitat loss and protection. Ecol Lett 8:23–29CrossRefGoogle Scholar
  47. Isnard S, L’huillier L, Rigault F, Jaffré T (2016) How did the ultramafic soils shape the flora of the new Caledonian hotspot? Plant Soil 403:53–76. doi:10.1007/s11104-016-2910-5 CrossRefGoogle Scholar
  48. Järup L (2003) Hazards of heavy metal contamination. Br Med Bull 68:167–182. doi:10.1093/bmb/ldg032 CrossRefPubMedGoogle Scholar
  49. Ji B, Bentivenga SP, Casper BB (2012) Comparisons of AM fungal spore communities with the same hosts but different soil chemistries over local and geographic scales. Oecologia 168:187–197CrossRefPubMedGoogle Scholar
  50. Ji B, Gehring CA, Wilson GWT et al (2013) Patterns of diversity and adaptation in Glomeromycota from three prairie grasslands. Mol Ecol 22:2573–2587. doi:10.1111/mec.12268 CrossRefPubMedGoogle Scholar
  51. Johnson NC, Wilson GWT, Bowker MA et al (2010) Resource limitation is a driver of local adaptation in mycorrhizal symbioses. Proc Natl Acad Sci 107:2093–2098. doi:10.1073/pnas.0906710107 CrossRefPubMedPubMedCentralGoogle Scholar
  52. Jyoti V, Saini-Eidukat B, Hopkins D, DeSutter T (2015) Naturally elevated metal contents of soils in northeastern North Dakota, USA, with a focus on cadmium. J Soils Sediments 15:1571–1583. doi:10.1007/s11368-015-1122-6 CrossRefGoogle Scholar
  53. Kabata-Pendias A (2000) Trace elements in soils and plants. CRC Press, LondonGoogle Scholar
  54. Kabata-Pendias A (2004) Soil–plant transfer of trace elements—an environmental issue. Geoderma 122:143–149. doi:10.1016/j.geoderma.2004.01.004 CrossRefGoogle Scholar
  55. Kazakou E, Dimitrakopoulos PG, Baker AJM et al (2008) Hypotheses, mechanisms and trade-offs of tolerance and adaptation to serpentine soils: from species to ecosystem level. Biol Rev 83:495–508PubMedGoogle Scholar
  56. Kazakou E, Adamidis GC, Baker AJM et al (2010) Species adaptation in serpentine soils in Lesbos Island (Greece): metal hyperaccumulation and tolerance. Plant Soil 332:369–385. doi:10.1007/s11104-010-0302-9 CrossRefGoogle Scholar
  57. Kierczak J, Pędziwiatr A, Waroszewski J, Modelska M (2016) Mobility of Ni, Cr and Co in serpentine soils derived on various ultrabasic bedrocks under temperate climate. Geoderma 268:78–91. doi:10.1016/j.geoderma.2016.01.025 CrossRefGoogle Scholar
  58. Krämer U (2010) Metal hyperaccumulation in plants. Annu Rev Plant Biol 61:517–534CrossRefPubMedGoogle Scholar
  59. Latham RE (1993) The serpentine barrens of temperate eastern North America: critical issues in the Management of Rare Species and Communities. Bartonia:61–74Google Scholar
  60. Latham R (2008) Pink hill serpentine barrens restoration and management plan. Continental Conservation, Rose Valley, PA. Accessed 15 July 2016
  61. Latham R, McGeehin M (2012) Unionville serpentine barrens restoration and management plan. Continental Conservation, Rose Valley, PA. 15 July 2016
  62. Latham RE, Steckel DB, Harper HM, et al. (2007a) Lehigh Gap Wildlife Refuge ecological assessment. For the Lehigh Gap Nature Center, Slatington, Pennsylvania, by Natural Lands Trust, Media, Pennsylvania; Continental Conservation, Rose Valley, Pennsylvania; and Botanical Inventory, Allentown, Pennsylvania, pp. 62Google Scholar
  63. Latham RE, Zercher D, McElhenny P et al (2007b) The role of disturbance in habitat restoration and Management for the Eastern Regal Fritillary (Speyeria idalia idalia) at a military installation in Pennsylvania. Ecol Restor 25:103–111. doi:10.3368/er.25.2.103 CrossRefGoogle Scholar
  64. Li Y-M, Chaney RL, Siebielec G, Kerschner BA (2000) Response of four Turfgrass cultivars to limestone and Biosolids-compost amendment of a zinc and cadmium contaminated soil at Palmerton, Pennsylvania. J Environ Qual 29:1440. doi:10.2134/jeq2000.00472425002900050010x CrossRefGoogle Scholar
  65. Lin Y-F, Aarts MGM (2012) The molecular mechanism of zinc and cadmium stress response in plants. Cell Mol Life Sci 69:3187–3206. doi:10.1007/s00018-012-1089-z CrossRefPubMedGoogle Scholar
  66. Lindsay WL, Norvell WA (1978) Development of a DTPA soil test for zinc, iron, manganese, and copper. Soil Sci Soc Am J 42:421–428CrossRefGoogle Scholar
  67. Mansfield MR, Pope NS, Mittelhauser GH, Rajakaruna N (2014) Diversity and soil-tissue elemental relations of vascular plants of Callahan mine, Brooksville, Maine, U.S.a. Rhodora 116:283–322. doi:10.3119/13-23 CrossRefGoogle Scholar
  68. Marschner P (2012) Marschner’s mineral nutrition of higher plants. Academic Press, San DiegoGoogle Scholar
  69. Massoura ST, Echevarria G, Becquer T et al (2006) Control of nickel availability by nickel bearing minerals in natural and anthropogenic soils. Geoderma 136:28–37. doi:10.1016/j.geoderma.2006.01.008 CrossRefGoogle Scholar
  70. Mengoni A, Schat H, Vangronsveld J (2010) Plants as extreme environments? Ni-resistant bacteria and Ni-hyperaccumulators of serpentine flora. Plant Soil 331:5–16CrossRefGoogle Scholar
  71. Nagajyoti PC, Lee KD, Sreekanth TVM (2010) Heavy metals, occurrence and toxicity for plants: a review. Environ Chem Lett 8:199–216. doi:10.1007/s10311-010-0297-8 CrossRefGoogle Scholar
  72. O’Dell RE (2014) Conservation and restoration of chemically extreme edaphic endemic flora in the western us Accessed 24 Jan 2017
  73. O’Dell RE, Rajakaruna N (2011) Intraspecific variation, adaptation, and evolution. Serpentine Evol Ecol Model Syst:97–137Google Scholar
  74. Palazzo AJ, Cary TJ, Hardy SE, Lee CR (2003) Root growth and metal uptake in four grasses grown on zinc-contaminated soils. J Environ Qual 32:834–840CrossRefPubMedGoogle Scholar
  75. Pauwels M, Saumitou-Laprade P, Holl AC et al (2005) Multiple origin of metallicolous populations of the pseudometallophyte Arabidopsis Halleri (Brassicaceae) in Central Europe: the cpDNA testimony. Mol Ecol 14:4403–4414. doi:10.1111/j.1365-294X.2005.02739.x CrossRefPubMedGoogle Scholar
  76. Pollard AJ, Powell KD, Harper FA, Smith JAC (2002) The genetic basis of metal hyperaccumulation in plants. Crit Rev Plant Sci 21:539–566CrossRefGoogle Scholar
  77. Pollard AJ, Reeves RD, Baker AJM (2014) Facultative hyperaccumulation of heavy metals and metalloids. Plant Sci 217–218:8–17. doi:10.1016/j.plantsci.2013.11.011 CrossRefPubMedGoogle Scholar
  78. Pope N, Harris TB, Rajakaruna N (2010) Vascular plants of adjacent serpentine and granite outcrops on the deer isles, Maine, U.S.a. Rhodora 112:105–141. doi:10.3119/09-02.1 CrossRefGoogle Scholar
  79. Prentice IC, Bartlein PJ, Webb T (1991) Vegetation and climate change in eastern North America since the last glacial maximum. Ecology 72:2038–2056. doi:10.2307/1941558 CrossRefGoogle Scholar
  80. Rajakaruna N, Harris TB, Alexander EB (2009) Serpentine geoecology of eastern north america: a review. Rhodora 111:21–108CrossRefGoogle Scholar
  81. Rees F, Germain C, Sterckeman T, Morel J-L (2015) Plant growth and metal uptake by a non-hyperaccumulating species (Lolium perenne) and a Cd-Zn hyperaccumulator (Noccaea Caerulescens) in contaminated soils amended with biochar. Plant Soil 395:57–73. doi:10.1007/s11104-015-2384-x CrossRefGoogle Scholar
  82. Robinson BH, Bischofberger S, Stoll A et al (2008) Plant uptake of trace elements on a Swiss military shooting range: uptake pathways and land management implications. Environ Pollut 153:668–676. doi:10.1016/j.envpol.2007.08.034 CrossRefPubMedGoogle Scholar
  83. Rodríguez-Seijo A, Andrade ML (2015) Characterization of soil physico-chemical parameters and limitations for revegetation in serpentine quarry soils (NW Spain). J Soils Sediments:1–10. doi:10.1007/s11368-015-1284-2
  84. Schat H, Llugany M, Vooijs R et al (2002) The role of phytochelatins in constitutive and adaptive heavy metal tolerances in hyperaccumulator and non-hyperaccumulator metallophytes. J Exp Bot 53:2381–2392. doi:10.1093/jxb/erf107 CrossRefPubMedGoogle Scholar
  85. Shaw BP, Prasad MNV, Jha VK, Sahu BB (2005) 16 Detoxification/Defense Mechanisms in Metal-Exposed Plants. Trace Elem Environ Biogeochem Biotechnol Bioremediation 291:271–289Google Scholar
  86. Smith DB, Cannon WF, Woodruff LG et al (2013) Geochemical and mineralogical data for soils of the conterminous United States. US Geol Surv Data Ser 801:19Google Scholar
  87. Thomas GW (1982) Exchangeable cations. Methods Soil Anal Part 2 Chem Microbiol Prop 159–165.Google Scholar
  88. Van der Ent A, Baker AJ, Reeves RD et al (2013) Hyperaccumulators of metal and metalloid trace elements: facts and fiction. Plant Soil:1–16Google Scholar
  89. Van Der Ent A, Baker AJ, Reeves RD et al (2015) Agromining: farming for metals in the future? Environ Sci Technol 49:4773–4780CrossRefPubMedGoogle Scholar
  90. Vogel J (2008) Unique aspects of the grass cell wall. Curr Opin Plant Biol 11:301–307CrossRefPubMedGoogle Scholar
  91. Whittaker RH (1954) The ecology of serpentine soils: a symposium. I. Introduction. Ecology 35:258–259Google Scholar
  92. Williams JW (2003) Variations in tree cover in North America since the last glacial maximum. Glob Planet Change 35:1–23. doi:10.1016/S0921-8181(02)00088-7 CrossRefGoogle Scholar
  93. Woodruff L, Cannon WF, Smith DB, Solano F (2015) The distribution of selected elements and minerals in soil of the conterminous United States. J Geochem Explor 154:49–60. doi:10.1016/j.gexplo.2015.01.006 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  • Cédric Gonneau
    • 1
  • Sanjay K. Mohanty
    • 2
  • Lee H. Dietterich
    • 1
  • Wei-Ting Hwang
    • 3
  • Jane K. Willenbring
    • 2
    • 4
  • Brenda B. Casper
    • 1
  1. 1.Department of BiologyUniversity of PennsylvaniaPhiladelphiaUSA
  2. 2.Department of Earth and Environmental ScienceUniversity of PennsylvaniaPhiladelphiaUSA
  3. 3.Department of Biostatistics and EpidemiologyUniversity of PennsylvaniaPhiladelphiaUSA
  4. 4.Geosciences Research Division, Scripps Institution of OceanographyUniversity of California, San DiegoLa JollaUSA

Personalised recommendations