Skip to main content
Log in

Characterizing Se transfer in the soil-crop systems under field condition

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Aims

A comparison was performed between plant species to study Se accumulation and translocation in the crops under field condition.

Methods

Wheat, rice and canola were sampled with respective cultivated soils from the Yangtze River Delta area. The concentrations of total Se and bio-available Se and a number of parameters (N, P, S, Fe, Ca, Mg, Al, K, Mn, pH and organic carbon) were analyzed, and the net translocation coefficients of Se in the soil-crop systems were calculated.

Results

The concentrations of Se in plants significantly differed between crop species, in spite of concentrations of total Se and bio-available Se and related parameters in the soils showing no significant difference among the wheat, rice and canola sampled sites. With regard to the seeds, wheat exhibited significantly higher Se concentration than rice and canola; whereas for the straw and root, wheat showed lower Se concentration than canola and rice. The net translocation coefficients of Se in different soil-crop systems exhibited different patterns, suggesting that the difference is mainly caused by a discrepancy in Se translocation from straw to grain.

Conclusions

Wheat has a weaker capability to accumulate Se compared with rice and canola, but a significantly stronger capability to transport Se from its straw to seed. These differences might be related to the influence of S on Se differences, comparing the biochemical behavior and transport of S and Se in plants of different plant species. Selenium follows sulfur during accumulation in wheat and rice because both elements are accumulated in plant tissues mainly in the form of amino acids; whereas in canola, the influence of S on Se accumulation is not as obvious as in wheat and rice because the seeds contain more non-amino acid organic S compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

BI:

Bio-accumulation index

NTC:

Net translocation coefficient

OC:

Organic carbon

SeCys:

Selenocysteine

SeMet:

Selenomethionine

WS-Se:

Water-soluble Se

References

  • Bremner JM (1996) Nitrogen-total. In: Sparks DL (ed) Methods of soil analysis, part 3, chemical methods. SSSA, Madison, p 10851121

    Google Scholar 

  • Cao Z, Wang X, Yao D, Zhang X, Wong M (2001) Selenium geochemistry of paddy soils in Yangtze River Delta. Environ Int 26:335–339

    Article  CAS  PubMed  Google Scholar 

  • Christophersen OA, Lyons G, Haug A, Steinnes E (2012) Selenium. In: Alloway BJ (ed) Heavy metals in soils: trace metals and metalloids in soils and their bioavailability, 3rd edn. Springer, Dordrecht, pp 429–463

    Google Scholar 

  • De Temmerman L, Waegeneers N, Thiry C, Laing GD, Tack F, Ruttens A (2014) Selenium content of Belgian cultivated soils and its uptake by field crops and vegetables. Sci Total Environ 468-469:77–82

    Article  CAS  PubMed  Google Scholar 

  • Dhillon KS, Dhillon SK (2009) Selenium concentrations of common weeds and agricultural crops grown in the seleniferous soils of northwestern India. Sci Total Environ 407:6150–6156

    Article  CAS  PubMed  Google Scholar 

  • Durán P, Acuña JJ, Jorquera MA, Azcón R, Borie F, Cornejo P, Mora ML (2013) Enhanced selenium content in wheat grain by co-inoculation of selenobacteria and arbuscularmycorrhizal fungi: a preliminary study as a potential Se biofortification strategy. J Cereal Sci 57:275–280

    Article  Google Scholar 

  • Fan M, Zhao F, Poulton PR, McGrath SP (2008) Historical changes in the concentrations of selenium in soil and wheat grain from the Broadbalk experiment over the last 160 years. Sci Total Environ 389:532–538

    Article  CAS  PubMed  Google Scholar 

  • Galinha C, Sánchez-Martínez M, Pacheco AMG, Freitas M, Coutinho J, Maçãs B et al (2015) Characterization of selenium-enriched wheat by agronomic biofortification. J Food Sci Technol 52:4236–4245

    Article  CAS  PubMed  Google Scholar 

  • Hartikainen H (2005) Biogeochemistry of selenium and its impact on food chain quality and human health. J Trace Elem Med Biol 18:309–318

    Article  CAS  PubMed  Google Scholar 

  • Haug A, Graham RD, Christophersen OA, Lyons GH (2007) How to use the world’s scarce selenium resources efficiently to increase the selenium concentration in food. Microb Ecol Health Dis 19:209–228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hawkesford MJ, Zhao FJ (2007) Strategies for increasing the selenium content of wheat. J Cereal Sci 46:282–292

    Article  CAS  Google Scholar 

  • Huhtanen P, Hetta M, Swensson C (2011) Evaluation of canola meal as a protein supplement for dairy cows: a review and a meta-analysis. Can J of Anim Sci 81:529–543

    Article  Google Scholar 

  • Johnsson L (1991) Selenium uptake by plants as a function of soil type, organic matter content and pH. Plant Soil 133:57–64

    Article  CAS  Google Scholar 

  • Kabata-Pendias A (2011) Trace elements in soils and plants, 4th edn. CRC Press, Boca Raton

    Google Scholar 

  • Keskinen R, Turakainen M, Hartikainen H (2010) Plant availability of soil selenate additions and selenium distribution within wheat and ryegrass. Plant Soil 333:301–313

    Article  CAS  Google Scholar 

  • Kikkert J, Hale B, Berkelaar E (2013) Selenium accumulation in durum wheat and spring canola as a function of amending soils with selenite, selenate and or sulphate. Plant Soil 372:629–641

    Article  CAS  Google Scholar 

  • Lee S, Woodard HJ, Doolittle JJ (2011) Effect of phosphate and sulfate fertilizers on selenium uptake by wheat (Triticum aestivum). Soil Sci Plant Nutr 57:696–704

    Article  CAS  Google Scholar 

  • Leustek T, Saito K (1999) Sulfate transport and assimilation in plants. Plant Physiol 120:637–643

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li N, Gao Z, Luo D, Tang X, Chen D, Hu Y (2007a) Selenium level in the environment and the population of Zhoukoudian area, Beijing. China. Sci Total Environ 381:105–111

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Dong Y, Zheng J, Xie H, Song M (2007b) The transport and transformation of selenium in the soil-paddy plant system affected by geological factors. Geophys Geochem Explor 31(1):77–80

    CAS  Google Scholar 

  • Li H, McGrath SP, Zhao F (2008) Selenium uptake, translocation and speciation in wheat supplied with selenate or selenite. New Phytol 178:92–102

    Article  CAS  PubMed  Google Scholar 

  • Liu HY, Probst A, Liao BH (2005) Metal contamination of soils and crops affected by the Chenzhou lead/zinc mine spill (Hunan, China). Sci Total Environ 339:153–166

  • Mattina MI, Lannucci-Berger W, Musante C, White JC (2003) Concurrent plant uptake of heavy metals and persistent organic pollutants from soil. Environ Pollut 124:375–378

    Article  CAS  PubMed  Google Scholar 

  • Nelson DW, Lee ES (1996) Total carbon, organic carbon, and organic matter. In: Sparks DL et al (eds) Methods of soil analysis, part 3, chemical methods. SSSA, Madison, pp 971–976

    Google Scholar 

  • Pilon-Smits EAH, Quinn CF (2010) Selenium metabolism in plants. In: Hell R, Mendel R-R (eds) Cell biology of metals and nutrients. Springer, Berlin/Heidelberg, pp 225–241

    Chapter  Google Scholar 

  • Saha UK, Liu C, Kozak LM, Huang PM (2005) Kinetics of selenite desorption by phosphate from hydroxyaluminium and hydroxyaluminosilicate-montmorillonite complexes. Geoderma 124:105–119

    Article  CAS  Google Scholar 

  • Shewry PR (2007) Improving the protein content and composition of cereal grain. J Cereal Sci 46:239–250

    Article  CAS  Google Scholar 

  • Sors TG, Ellis DR, Salt DE (2005) Selenium uptake, translocation, assimilation and metabolic fate in plants. Photosynthesis Res 86:373–389

    Article  CAS  Google Scholar 

  • Steinbrenner H, Sies H (2009) Protection against reactive oxygen species by selenoproteins. Biochim Biophys Acta 1790(11):1478–1485

    Article  CAS  PubMed  Google Scholar 

  • Stroud JL, Li HF, Lopez-Bellido FJ, Broadly MR, Foot I (2010) Impact of Sulphur fertilization on crop response to selenium fertilization. Plant Soil 332:31–40

    Article  CAS  Google Scholar 

  • Sun W, Huang B, Zhao Y, Shi X, Darilek J, Deng X, Wang H, Zou Z (2008) Spatial variability of soil selenium as affected by geologic and pedogenic processes and its effect on ecosystem and human health. Geochem J 43:217–225

    Article  Google Scholar 

  • Sun G, Liu X, Williams PN, Zhu Y (2010) Distribution and translocation of selenium from soil to grain and its speciation in paddy rice (Oryza sativa L.). Environ Sci Technol 44:6706–6711

    Article  CAS  PubMed  Google Scholar 

  • Sun G, Meharg AA, Li G, Chen Z, Yang L, Chen S, Zhu Y-G (2016) Distribution of soil selenium in China is potentially controlled by deposition and volatilization? Sci Rep 6:20953

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tan J, Zhu W, Wang W, Li R, Hou S, Wang D, Yang L (2002) Selenium in soil and endemic diseases in China. Sci Total Environ 284:227–235

    Article  CAS  PubMed  Google Scholar 

  • Tanhan P, Kruatrachue M, Pokethitiyook P, Chaiyarat R (2007) Uptake and accumulation of cadmium, lead and zinc by Siam weed [Chromolaena odorata (L.) King & Robinson]. Chemosphere 68:323–329

    Article  CAS  PubMed  Google Scholar 

  • Terry N, Zayed AM, de Souza MP, Tarun AS (2000) Selenium in higher plants. Annu Rev Plant Physiol Plant Mol Biol 51:401–432

    Article  CAS  PubMed  Google Scholar 

  • Trischuk RG, Schilling BS, Low NH, Gray GR, Gusta LV (2014) Cold acclimation, de-acclimation and re-acclimation of spring canola, winter canola and winter wheat: the role of carbohydrates, cold-induced stress proteins and vernalization. Environ Exp Botany 106:156–163

    Article  CAS  Google Scholar 

  • USDA (2006) Foreign agricultural service global agriculture information network report CH6064. Peoples Republic of fairs product specific maximum levels of contaminants in foods, China

    Google Scholar 

  • Wang J, Wang Z, Mao H, Zhao H, Huang D (2013b) Increasing Se concentration in maize grain with soil- or foliar-applied selenite on the loess plateau in China. Field Crops Res 150:83–90

    Article  Google Scholar 

  • Wang C, Ji J, Yang Z, Chen L (2013a) The contamination and transfer of potentially toxic elements and their relations with iron, vanadium and titanium in the soil-rice system from Suzhou region, China. Environ Earth Sci 68:13–21

    Article  CAS  Google Scholar 

  • Wang Q, Zhang J, Zhao B, Xin X, Deng X, Zhang H (2016) Influence of long-term fertilization on selenium accumulation in soil and uptake by crops. Pedosphere 26:120–129

    Article  Google Scholar 

  • Whetter PA, Ullrey DE (1978) Improved fluorometric method for determining selenium. J Assoc Anal Chem 61:927–930

    CAS  Google Scholar 

  • White PJ, Bowen HC, Marshall B, Broadley MR (2007) Extraordinarily high leaf selenium to sulfur ratios define ‘Se-accumulator’ plants. Ann Bot London 100:111–118

    Article  CAS  Google Scholar 

  • Williams PN, Lombi E, Sun G, Scheckel K, Zhu Y, Feng X, Zhu J, Carey A-M, Adomako E, Lawgali Y, Deacon C, Meharg AA (2009) Selenium characterization in the global rice supply chain. Environ Sci Technol 43:6024–6030

    Article  CAS  PubMed  Google Scholar 

  • Winkel LHE, Vriens B, Jones GD, Schneider LS, Pilon-Smits E, Bañuelos GS (2015) Selenium cycling across soil-plant-atmosphere interfaces: a critical review. Nutrients 7:4199–4239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang H, Feng X, Zhu J, Sapkota A, Meng B, Yao H et al (2012) Selenium in soil inhibits mercury uptake and translocation in rice (Oryza sativa L.). Environ Sci Technol 46:10040–10046

    CAS  PubMed  Google Scholar 

  • Zhang H, Feng X, Jiang C, Li Q, Liu Y, Gu C et al (2014) Understanding the paradox of selenium contamination in mercury mining areas: high soil content and low accumulation in rice. Environ Pollut 188:27–36

    Article  CAS  PubMed  Google Scholar 

  • Zhao C, Ren J, Xue C, Lin E (2005) Study on the relationship between soil selenium plant selenium uptake. Plant Soil 2005(277):197–206

    Article  Google Scholar 

  • Zhu J, Wang N, Li S, Li L, Su H, Liu C (2008) Distribution and transport of selenium in Yutangba, China: impact of human activities. Sci Total Environ 392:252–261

    Article  CAS  PubMed  Google Scholar 

  • Zhu Y-G, Pilon-Smits EAH, Zhao F-J, Williams PN, Meharg AA (2009) Selenium in higher plants: understanding mechanisms for biofortification and phytoremediation. Trends Plant Sci 14:436–442

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was funded by the Natural Science Foundation of Jiangsu Province of China (Grants No BK20160947 and BK20150915) and National Natural Science Foundation of China (Grants No 41503099 and 41501197).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Cheng Wang or Junfeng Ji.

Additional information

Responsible Editor: Robert Reid.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, C., Ji, J. & Zhu, F. Characterizing Se transfer in the soil-crop systems under field condition. Plant Soil 415, 535–548 (2017). https://doi.org/10.1007/s11104-017-3185-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-017-3185-1

Keywords

Navigation