Advertisement

Plant and Soil

, Volume 416, Issue 1–2, pp 181–192 | Cite as

Trichoderma-enriched organic fertilizer can mitigate microbiome degeneration of monocropped soil to maintain better plant growth

  • Guan Pang
  • Feng Cai
  • Ruixia Li
  • Zheng Zhao
  • Rong Li
  • Xiaolong Gu
  • Qirong Shen
  • Wei ChenEmail author
Regular Article

Abstract

Aims

Investigating shifts in soil microbiomes driven by different fertilization regimes would be helpful for lessening the negative effect of monoculture in agricultural systems.

Methods

In the present work, we employed MiSeq sequencing to evaluate the response of local microbial communities to three different fertilization regimes, i.e., heavy chemical fertilizer application (CF) and reduced chemical fertilizer applications supplemented with organic (OF) or Trichoderma-enriched organic fertilizer (BF), in a continuous five-season pot experiment on tomato.

Results

The CF-treated soil resulted in a bacterial community with the lowest diversity, while the BF-treated soil had the highest diversity level. The OF-treated soil had the lowest diversity in the fungal community, while the CF- and BF-treated soils had higher diversity. Moreover, better plant growth and soil fertility status were obtained in the BF treatment followed by the OF and CF treatments.

Conclusions

Compared to the CF and OF regimes, reduced chemical fertilizer plus Trichoderma-enriched organic fertilizer (BF) is the most suitable regime to control microbiome degeneration of monocropped soil and to thus maintain tomato plant growth and health.

Keywords

Tomato monocropping Soil microbiome MiSeq sequencing Soil nutrient characteristics 

Notes

Acknowledgements

This research was financially supported by 973 program (2015CB150500) and National Key Technology R&D Program of the Ministry of Science and Technology of China (2013BAD20B05 and L0201400202) and Jiangsu Science and Technology Department (BK20150059).

Supplementary material

11104_2017_3178_Fig4_ESM.gif (90 kb)
Figure S1

Rarefaction curves of bacterial (a) and fungal (b) communities based on observed OTUs at 3% distance for individual sample. (GIF 90 kb)

11104_2017_3178_MOESM1_ESM.tif (2 mb)
High resolution image (TIFF 2077 kb)
11104_2017_3178_Fig5_ESM.gif (38 kb)
Figure S2

Principal Coordinate Analysis (PCoA) based on the unweighted Unifrac algorithm to visualize the pairwise community dissimilarity of the bacterial (a) and fungal (b) communities in the different soil samples. CF: 100% chemical fertilizer; BF: 75% chemical fertilizer + bioorganic fertilizer; OF: 75% chemical fertilizer + organic fertilizer. (GIF 37 kb)

11104_2017_3178_MOESM2_ESM.tif (1.9 mb)
High resolution image (TIFF 1913 kb)
11104_2017_3178_Fig6_ESM.gif (601 kb)
Figure S3

Tomato seedlings grown in the three soils four weeks post transplanting. CF: 100% chemical fertilizer; BF: 75% chemical fertilizer + bioorganic fertilizer; OF: 75% chemical fertilizer + organic fertilizer. (GIF 600 kb)

11104_2017_3178_MOESM3_ESM.tif (19.6 mb)
High resolution image (TIFF 20033 kb)
11104_2017_3178_Fig7_ESM.gif (624 kb)
Figure S4

Heatmap of the bacterial (a) and fungal (b) distributions of the top 100 abundant genera present in all of the soil samples. The relative abundances of bacterial and fungal genera are indicated by colour intensity. (GIF 623 kb)

11104_2017_3178_MOESM4_ESM.tif (3.2 mb)
High resolution image (TIFF 3251 kb)

References

  1. Chaparro JM, Sheflin AM, Manter DK et al (2012) Manipulating the soil microbiome to increase soil health and plant fertility. Biol Fertil Soils 48:489–499. doi: 10.1007/s00374-012-0691-4 CrossRefGoogle Scholar
  2. Adesemoye AO, Kloepper JW (2009) Plant–microbes interactions in enhanced fertilizer-use efficiency. Appl Microbiol Biotechnol 85:1–12. doi: 10.1007/s00253-009-2196-0 CrossRefPubMedGoogle Scholar
  3. Adesemoye AO, Torbert HA, Kloepper JW (2010) Increased plant uptake of nitrogen from 15 N-depleted fertilizer using plant growth-promoting rhizobacteria. Appl Soil Ecol 46:54–58. doi: 10.1016/j.apsoil.2010.06.010 CrossRefGoogle Scholar
  4. Ai C, Liang G, Sun J et al (2015) Reduced dependence of rhizosphere microbiome on plant-derived carbon in 32-year long-term inorganic and organic fertilized soils. Soil Biol Biochem 80:70–78. doi: 10.1016/j.soilbio.2014.09.028 CrossRefGoogle Scholar
  5. Bakker PAHM, Berendsen RL, Doornbos RF et al (2013) The rhizosphere revisited: root microbiomics. Front Plant Sci. doi: 10.3389/fpls.2013.00165 PubMedPubMedCentralGoogle Scholar
  6. Berendsen RL, Pieterse CMJ, Bakker PAHM (2012) The rhizosphere microbiome and plant health. Trends Plant Sci 17:478–486. doi: 10.1016/j.tplants.2012.04.001 CrossRefPubMedGoogle Scholar
  7. Bernard E, Larkin RP, Tavantzis S et al (2012) Compost, rapeseed rotation, and biocontrol agents significantly impact soil microbial communities in organic and conventional potato production systems. Appl Soil Ecol 52:29–41. doi: 10.1016/j.apsoil.2011.10.002 CrossRefGoogle Scholar
  8. Besemer K, Peter H, Logue JB, et al (2012) Unraveling assembly of stream biofilm communities. ISME J 6:1459–1468. doi: 10.1038/ismej.2011.205
  9. Cai F, Chen W, Wei Z et al (2015) Colonization of Trichoderma harzianum strain SQR-T037 on tomato roots and its relationship to plant growth, nutrient availability and soil microflora. Plant Soil 388:337–350. doi: 10.1007/s11104-014-2326-z CrossRefGoogle Scholar
  10. Cai F, Yu G, Wang P, et al (2013) Harzianolide, a novel plant growth regulator and systemic resistance elicitor from Trichoderma harzianum. Plant Physiol Biochem 73:106–113. doi: 10.1016/j.plaphy.2013.08.011
  11. Caporaso JG, Kuczynski J, Stombaugh J et al (2010) QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7:335–336. doi: 10.1038/nmeth.f.303 CrossRefPubMedPubMedCentralGoogle Scholar
  12. Carter MR, Sanderson JB (2001) Influence of conservation tillage and rotation length on potato productivity, tuber disease and soil quality parameters on a fine sandy loam in eastern Canada. Soil Tillage Res 63:1–13. doi: 10.1016/S0167-1987(01)00224-0 CrossRefGoogle Scholar
  13. Chen L, Yang X, Raza W et al (2011) Trichoderma harzianum SQR-T037 rapidly degrades allelochemicals in rhizospheres of continuously cropped cucumbers. Appl Microbiol Biotechnol 89:1653–1663. doi: 10.1007/s00253-010-2948-x CrossRefPubMedGoogle Scholar
  14. da Costa PB, Beneduzi A, de Souza R et al (2012) The effects of different fertilization conditions on bacterial plant growth promoting traits: guidelines for directed bacterial prospection and testing. Plant Soil 368:267–280. doi: 10.1007/s11104-012-1513-z CrossRefGoogle Scholar
  15. Fu L, Ruan Y, Tao C et al (2016) Continous application of bioorganic fertilizer induced resilient culturable bacteria community associated with banana fusarium wilt suppression. Sci Rep. doi: 10.1038/srep27731 Google Scholar
  16. Garbeva P, van Veen JA, van Elsas JD (2004) Microbial diversity in soil: selection microbial populations by plant and soil type and implications for disease suppressiveness. Annu Rev Phytopathol 42:243–270. doi: 10.1146/annurev.phyto.42.012604.135455 CrossRefPubMedGoogle Scholar
  17. Harman GE, Howell CR, Viterbo A et al (2004) Trichoderma species — opportunistic, avirulent plant symbionts. Nat Rev Microbiol 2:43–56. doi: 10.1038/nrmicro797 CrossRefPubMedGoogle Scholar
  18. Huang L-F, Song L-X, Xia X-J et al (2013) Plant-soil feedbacks and soil sickness: from mechanisms to application in agriculture. J Chem Ecol 39:232–242. doi: 10.1007/s10886-013-0244-9 CrossRefPubMedGoogle Scholar
  19. Jumpponen A, Jones KL (2010) Seasonally dynamic fungal communities in the Quercus macrocarpa phyllosphere differ between urban and nonurban environments. New Phytol 186:496–513. doi: 10.1111/j.1469-8137.2010.03197.x CrossRefPubMedGoogle Scholar
  20. Leaw SN, Chang HC, Sun HF, et al (2006) Identification of medically important yeast species by sequence analysis of the internal transcribed spacer regions. J Clin Microbiol 44:693–699. doi: 10.1128/JCM.44.3.693-699.2006
  21. Li C, Li X, Kong W et al (2010) Effect of monoculture soybean on soil microbial community in the Northeast China. Plant Soil 330:423–433. doi: 10.1007/s11104-009-0216-6 CrossRefGoogle Scholar
  22. Li R, Shen Z, Sun L et al (2016) Novel soil fumigation method for suppressing cucumber fusarium wilt disease associated with soil microflora alterations. Appl Soil Ecol 101:28–36. doi: 10.1016/j.apsoil.2016.01.004 CrossRefGoogle Scholar
  23. Li R-X, Cai F, Pang G et al (2015) Solubilisation of phosphate and micronutrients by Trichoderma harzianum and its relationship with the promotion of tomato plant growth. PLoS One 10:e0130081. doi: 10.1371/journal.pone.0130081 CrossRefPubMedPubMedCentralGoogle Scholar
  24. Lichtfouse E (ed) (2011) Genetics, biofuels and local farming systems. Springer Netherlands, DordrechtGoogle Scholar
  25. Mo AS, Qiu ZQ, He Q et al (2016) Effect of continuous monocropping of tomato on soil microorganism and microbial biomass carbon. Commun Soil Sci Plant Anal 47:1069–1077. doi: 10.1080/00103624.2016.1165832 CrossRefGoogle Scholar
  26. Molla AH, Haque MM, Haque MA et al (2012) Trichoderma-enriched biofertilizer enhances production and nutritional quality of tomato (Lycopersicon esculentum mill.) and minimizes NPK fertilizer use. Agric Res 1:265–272. doi: 10.1007/s40003-012-0025-7 CrossRefGoogle Scholar
  27. Nayyar A, Hamel C, Lafond G et al (2009) Soil microbial quality associated with yield reduction in continuous-pea. Appl Soil Ecol 43:115–121. doi: 10.1016/j.apsoil.2009.06.008 CrossRefGoogle Scholar
  28. Ofek M, Voronov-Goldman M, Hadar Y et al (2014) Host signature effect on plant root-associated microbiomes revealed through analyses of resident vs. active communities. Environ Microbiol 16:2157–2167. doi: 10.1111/1462-2920.12228 CrossRefPubMedGoogle Scholar
  29. Redecker D, Raab P (2006) Phylogeny of the Glomeromycota (arbuscular mycorrhizal fungi): recent developments and new gene markers. Mycologia 98:885–895. doi: 10.3852/mycologia.98.6.885 CrossRefPubMedGoogle Scholar
  30. Ryan PR, Dessaux Y, Thomashow LS et al (2009) Rhizosphere engineering and management for sustainable agriculture. Plant Soil 321:363–383. doi: 10.1007/s11104-009-0001-6 CrossRefGoogle Scholar
  31. Shen Z, Wang D, Ruan Y et al (2014) Deep 16S rRNA pyrosequencing reveals a bacterial community associated with banana fusarium wilt disease suppression induced by bio-organic fertilizer application. PLoS One 9:e98420. doi: 10.1371/journal.pone.0098420 CrossRefPubMedPubMedCentralGoogle Scholar
  32. Simpson RJ, Oberson A, Culvenor RA et al (2011) Strategies and agronomic interventions to improve the phosphorus-use efficiency of farming systems. Plant Soil 349:89–120. doi: 10.1007/s11104-011-0880-1 CrossRefGoogle Scholar
  33. Somai BM, Dean RA, Farnham MW, et al (2002) Internal transcribed spacer regions 1 and 2 and random amplified polymorphic DNA analysis of Didymella bryoniae and related Phoma species isolated from cucurbits. Phytopathology 92:997–1004. doi: 10.1094/PHYTO.2002.92.9.997
  34. ter Braak CJF, Šmilauer P (2002) CANOCO reference manual and CanoDraw for windows user’s guide: Software for canonical community ordination (version 4.5). Biometris, Ithaca NYGoogle Scholar
  35. Tian W, Wang L, Li Y et al (2015) Responses of microbial activity, abundance, and community in wheat soil after three years of heavy fertilization with manure-based compost and inorganic nitrogen. Agric Ecosyst Environ 213:219–227. doi: 10.1016/j.agee.2015.08.009 CrossRefGoogle Scholar
  36. Trillas MI, Segarra G (2009) Interactions between nonpathogenic fungi and plants. In: van Loon LC (ed) Advances in botanical research. Elsevier, Amsterdam, pp 321–359. doi: 10.1016/S0065-2296(09)51008-7Google Scholar
  37. Wang B, Li R, Ruan Y et al (2015) Pineapple–banana rotation reduced the amount of Fusarium oxysporum more than maize–banana rotation mainly through modulating fungal communities. Soil Biol Biochem 86:77–86. doi: 10.1016/j.soilbio.2015.02.021 CrossRefGoogle Scholar
  38. Ward NL, Challacombe JF, Janssen PH et al (2009) Three genomes from the phylum Acidobacteria provide insight into the lifestyles of these microorganisms in soils. Appl Environ Microbiol 75:2046–2056. doi: 10.1128/AEM.02294-08 CrossRefPubMedPubMedCentralGoogle Scholar
  39. Xiong W, Zhao Q, Xue C et al (2016) Comparison of fungal community in black pepper-vanilla and vanilla monoculture systems associated with vanilla fusarium wilt disease. Front Microbiol. doi: 10.3389/fmicb.2016.00117 Google Scholar
  40. Xu L, Ravnskov S, Larsen J et al (2012) Linking fungal communities in roots, rhizosphere, and soil to the health status of Pisum sativum. FEMS Microbiol Ecol 82:736–745. doi: 10.1111/j.1574-6941.2012.01445.x CrossRefPubMedGoogle Scholar
  41. Xun W, Huang T, Zhao J et al (2015) Environmental conditions rather than microbial inoculum composition determine the bacterial composition, microbial biomass and enzymatic activity of reconstructed soil microbial communities. Soil Biol Biochem 90:10–18. doi: 10.1016/j.soilbio.2015.07.018 CrossRefGoogle Scholar
  42. Yuan J, Chaparro JM, Manter DK et al (2015) Roots from distinct plant developmental stages are capable of rapidly selecting their own microbiome without the influence of environmental and soil edaphic factors. Soil Biol Biochem 89:206–209. doi: 10.1016/j.soilbio.2015.07.009 CrossRefGoogle Scholar
  43. Zhang F, Zhu Z, Yang X et al (2013) Trichoderma harzianum T-E5 significantly affects cucumber root exudates and fungal community in the cucumber rhizosphere. Appl Soil Ecol 72:41–48. doi: 10.1016/j.apsoil.2013.05.016 CrossRefGoogle Scholar
  44. Zhao J, Zhang R, Xue C et al (2014) Pyrosequencing reveals contrasting soil bacterial diversity and community structure of two main winter wheat cropping systems in China. Microb Ecol 67:443–453. doi: 10.1007/s00248-013-0322-0 CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  • Guan Pang
    • 1
  • Feng Cai
    • 1
  • Ruixia Li
    • 1
  • Zheng Zhao
    • 1
  • Rong Li
    • 1
  • Xiaolong Gu
    • 1
  • Qirong Shen
    • 1
  • Wei Chen
    • 1
    Email author
  1. 1.Jiangsu Key Lab for Organic Solid Waste UtilizationNanjing Agricultural UniversityNanjingChina

Personalised recommendations