Skip to main content

Decomposition rates of fine roots from three herbaceous perennial species: combined effect of root mixture composition and living plant community

Abstract

Aims

In most ecosystems, plant roots from different species decompose in mixtures and in the presence of living roots; however much root decomposition research has focused on how roots of individual species or artificial mixtures decompose in the absence of living plants. We thus examined two poorly studied components of root litter decomposition: 1) whether decomposition of root mixtures can be predicted from the sum of the decomposition rates of each component species and 2) how living plants influence rates of root decomposition.

Methods

Decomposition rates of roots from three perennial herbaceous Mediterranean species grown in monocultures and in two- and three-species mixtures were determined after a one-year incubation period under their living community and in non-vegetated soil (bare soil). Soil respiration in the presence of glucose (substrate induced respiration, SIR) was measured in each plant community and in bare soil.

Results

Decomposition rates of root mixtures cannot be predicted from decomposition rates of the component species, both additive and non-additive effects were observed; the presence of low quality roots of Carex humilis in mixtures strongly negatively influenced root decomposition. The presence of living plants stimulated root decomposition in monocultures and two-species communities, likely through an enhanced microbial activity (SIR) under plant communities.

Conclusion

This study highlights that root decomposition cannot be predicted from decomposition rates of the component species and is more influenced by endogenous factors or root litter functional composition than by plant community composition.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  • Aerts R (1990) Nutrient use efficiency in evergreen and deciduous species from heathlands. Oecologia 84:391–397

    Article  PubMed  Google Scholar 

  • Aulen M, Shipley B, Bradley R (2012) Prediction of in situ root decomposition rates in an interspecific context from chemical and morphological traits. Ann Bot 109:287–297. doi:10.1093/aob/mcr259

    CAS  Article  PubMed  Google Scholar 

  • Austin AT, Zanne AE (2015) Whether in life or in death: fresh perspectives on how plants affect biogeochemical cycling. J Ecol 103:1367–1371. doi:10.1111/1365-2745.12486

    CAS  Article  Google Scholar 

  • Ayres E, Steltzer H, Simmons BL et al (2009) Home-field advantage accelerates leaf litter decomposition in forests. Soil Biol Biochem 41:606–610. doi:10.1016/j.soilbio.2008.12.022

    CAS  Article  Google Scholar 

  • Barkaoui K, Roumet C, Volaire F (2016) Mean root trait more than root trait diversity determines drought resilience in native and cultivated Mediterranean grass mixtures. Agric Ecosyst Environ 231:122–132. doi:10.1016/j.agee.2016.06.035

    Article  Google Scholar 

  • Bates D, Maechler M, Bolker B et al (2015) Linear mixed-effects models using “Eigen” and S4. R Packag. version 1.1-11

  • Beare MH, Neely CL, Coleman DC, Hargrove WL (1990) A substrate-induced respiration (SIR) method for measurement of fungal and bacterial biomass on plant residues. Soil Biol Biochem 22:585–594

    Article  Google Scholar 

  • Bernard-Verdier M, Navas ML, Vellend M et al (2012) Community assembly along a soil depth gradient: contrasting patterns of plant trait convergence and divergence in a Mediterranean rangeland. J Ecol 100:1422–1433. doi:10.1111/1365-2745.12003

    Article  Google Scholar 

  • Birouste M, Kazakou E, Blanchard A, Roumet C (2012) Plant traits and decomposition: are the relationships for roots comparable to those for leaves? Ann Bot 109:463–472. doi:10.1093/aob/mcr297

    Article  PubMed  Google Scholar 

  • Carrera AL, Bertiller MB, Larreguy C (2008) Leaf litterfall, fine-root production, and decomposition in shrublands with different canopy structure induced by grazing in the Patagonian Monte, Argentina. Plant Soil 311:39–50. doi:10.1007/s11104-008-9655-8

    CAS  Article  Google Scholar 

  • Casper BB, Jackson RB (1997) Plant competition underground. Annu Rev Ecol Syst 28:545–570

    Article  Google Scholar 

  • Chessel D, Dufour AB, Thioulouse J (2004) The ade4 package-I- One-table methods. R News 4:5–10

    Google Scholar 

  • Clemmensen KE, Bahr A, Ovaskainen O et al (2013) Roots and associated fungi drive long-term carbon sequestration in Boreal forest. Science 339:1615–1618. doi:10.1126/science.1231923

    CAS  Article  PubMed  Google Scholar 

  • Cong W-F, Hoffland E, Li L et al (2015) Intercropping affects the rate of decomposition of soil organic matter and root litter. Plant Soil 399–411. doi:10.1007/s11104-015-2433-5

  • Coq S, Weigel J, Butenschoen O et al (2011) Litter composition rather than plant presence affects decomposition of tropical litter mixtures. Plant Soil 343:273–286. doi:10.1007/s11104-011-0717-y

    CAS  Article  Google Scholar 

  • Daget P (1977) Le bioclimat méditerranéen: caractères généraux, modes de caractérisation. Vegetatio 34:1–20

    Article  Google Scholar 

  • de Graaff M-A, Schadt CW, Rula K et al (2011) Elevated CO2 and plant species diversity interact to slow root decomposition. Soil Biol Biochem 43:2347–2354. doi:10.1016/j.soilbio.2011.07.006

    Article  Google Scholar 

  • de Vries FT, Shade A (2013) Controls on soil microbial community stability under climate change. Front Microbiol 4:1–16. doi:10.3389/fmicb.2013.00265

    Article  Google Scholar 

  • Downing AL, Leibold MA (2002) Ecosystem consequences of species richness and composition in pond food webs. Nature 416:837–841. doi:10.1038/416837a

    CAS  Article  PubMed  Google Scholar 

  • Fox J, Weisberg S, Friendly M et al (2014) Effect displays for linear, generalized linear, and other models. J Stat Softw 8:1–27

    Google Scholar 

  • Freschet GT, Cornelissen JHC, van Logtestijn RSP, Aerts R (2010) Substantial nutrient resorption from leaves, stems and roots in a subarctic flora: what is the link with other resource economics traits? New Phytol 186:879–889. doi:10.1111/j.1469-8137.2010.03228.x

    CAS  Article  PubMed  Google Scholar 

  • Freschet GT, Aerts R, Cornelissen JHC (2012) Multiple mechanisms for trait effects on litter decomposition: moving beyond home-field advantage with a new hypothesis. J Ecol 100:619–630. doi:10.1111/j.1365-2745.2011.01943.x

    Article  Google Scholar 

  • García-Palacios P, Prieto I, Ourcival J-M, Hättenschwiler S (2016) Disentangling the litter quality and soil microbial contribution to leaf and fine root litter decomposition responses to reduced rainfall. Ecosystems 19:490–503. doi:10.1007/s10021-015-9946-x

    Article  Google Scholar 

  • Gartner TB, Cardon ZG (2004) Decomposition dynamics in mixed-species leaf litter. Oikos 104:230–246. doi:10.1111/j.0030-1299.2004.12738.x

    Article  Google Scholar 

  • Gessner MO, Swan CM, Dang CK, McKie BG, Bardgett RD, Wall DH, Hättenschwiler S (2010) Diversity meets decomposition. Trends Ecol Evol 25(6):372–380

  • Gholz HL, Wedin DA, Smitherman SM et al (2000) Long-term dynamics of pine and hardwood litter in contrasting environments: toward a global model of decomposition. Glob Chang Biol 6:751–765. doi:10.1046/j.1365-2486.2000.00349.x

    Article  Google Scholar 

  • Grime JPJ (1998) Benefits of plant diversity to ecosystems: immediate, filter and founder effects. J Ecol 86:891–899

    Article  Google Scholar 

  • Guerrero-Ramírez NR, Craven D, Messier C et al (2016) Root quality and decomposition environment, but not tree species richness, drive root decomposition in tropical forests. Plant Soil 404:125–139. doi:10.1007/s11104-016-2828-y

    Article  Google Scholar 

  • Harell FE Jr (2015) Hmisc: Harrell Miscellaneous. R Packag. version 3.17-2

  • Hättenschwiler S, Gasser P (2005) Soil animals alter plant litter diversity effects on decomposition. Proc Natl Acad Sci 102:1519–1524

    Article  PubMed  PubMed Central  Google Scholar 

  • Hättenschwiler S, Tiunov AV, Scheu S (2005) Biodiversity and litter decomposition in terrestrial ecosystems. Annu Rev Ecol Evol Syst 36:191–218. doi:10.1146/annurev.ecolsys.36.112904.151932

    Article  Google Scholar 

  • Hawkes CV, Kivlin SN, Rocca JD et al (2011) Fungal community responses to precipitation. Glob Chang Biol 17:1637–1645. doi:10.1111/j.1365-2486.2010.02327.x

    Article  Google Scholar 

  • Hinsinger P, Bengough AG, Vetterlein D, Young IM (2009) Rhizosphere: biophysics, biogeochemistry and ecological relevance. Plant Soil 321:117–152. doi:10.1007/s11104-008-9885-9

    CAS  Article  Google Scholar 

  • Hobbie SE, Oleksyn J, Eissenstat DM, Reich PB (2010) Fine root decomposition rates do not mirror those of leaf litter among temperate tree species. Oecologia 162:505–513. doi:10.1007/s00442-009-1479-6

    Article  PubMed  Google Scholar 

  • Hothorn T, Bretz F, Westfall P (2008) Simultaneous inference in general parametric models. Biom J 50:346–363. doi:10.1002/bimj.200810425

    Article  PubMed  Google Scholar 

  • Jenkinson D (1977) Studies on the decomposition of plant material in soil. V. The effects of plant cover and soil type on the loss of carbon from 14C labelled ryegrass decomposing under field conditions. J Soil Sci 28:424–434

    CAS  Article  Google Scholar 

  • Jones DL, Nguyen C, Finlay RD (2009) Carbon flow in the rhizosphere: carbon trading at the soil–root interface. Plant Soil 321:5–33. doi:10.1007/s11104-009-9925-0

    CAS  Article  Google Scholar 

  • Lecerf A, Marie G, Kominoski JS et al (2011) Incubation time, functional litter diversity, and habitat characteristics predict litter-mixing effects on decomposition. Ecology 92:160–169. doi:10.1890/10-0315.1

    Article  PubMed  Google Scholar 

  • Lei P, Bauhus J (2010) Use of near-infrared reflectance spectroscopy to predict species composition in tree fine-root mixtures. Plant Soil 333:93–103. doi:10.1007/s11104-010-0325-2

    CAS  Article  Google Scholar 

  • Liu P, Huang J, Han X, Sun O (2009) Litter decomposition in semiarid grassland of Inner Mongolia, China. Rangel Ecol Manag 62:305–313

    Article  Google Scholar 

  • Makkonen M, Berg MP, van Logtestijn RSP et al (2013) Do physical plant litter traits explain non-additivity in litter mixtures? A test of the improved microenvironmental conditions theory. Oikos 122:987–997. doi:10.1111/j.1600-0706.2012.20750.x

    Article  Google Scholar 

  • Martijn Bezemer T, van der Putten WH, Martens H et al (2013) Above- and below-ground herbivory effects on below-ground plant-fungus interactions and plant-soil feedback responses. J Ecol 101:325–333. doi:10.1111/1365-2745.12045

    CAS  Article  Google Scholar 

  • McClaugherty CA, Aber JD, Melillo JM (1982) The role of fine roots in the organic matter and nitrogen budgets of two forested ecosystems. Ecology 63:1481–1490. doi:10.2307/1938874

    Article  Google Scholar 

  • McLaren J, Turkington R (2010) Plant functional group identity differentially affects leaf and root decomposition. Glob Chang Biol 16:3075–3084. doi:10.1111/j.1365-2486.2009.02151.x

    Google Scholar 

  • Miller RM (2005) The nonmycorrhizal root—A strategy for survival in nutrient-impoverished soils. New Phytol 165:655–658. doi:10.1111/j.1469-8137.2005.01331.x

    Article  PubMed  Google Scholar 

  • Mommer L, Wagemaker CAM, De Kroon H, Ouborg NJ (2008) Unravelling below-ground plant distributions: a real-time polymerase chain reaction method for quantifying species proportions in mixed root samples. Mol Ecol Resour 8:947–953. doi:10.1111/j.1755-0998.2008.02130.x

    CAS  Article  PubMed  Google Scholar 

  • Mueller K, Tilman G, Fornara D, Hobbie S (2013) Root depth distribution and the diversity-productivity relationship in a long-term grassland experiment. Ecology 94:787–793

    Article  Google Scholar 

  • Nambiar EKS (1987) Do nutrients retranslocate from fine roots? Can J For Res 17:913–918. doi:10.1139/x87-143

    Article  Google Scholar 

  • Nicolardot B, Denys D, Lagacherie B et al (1995) Decomposition of 15N-labelled catch-crop residues in soil: evaluation of N mineralization and plant-N uptake potentials under controlled conditions. Eur J Soil Sci 46:115–123. doi:10.1111/j.1365-2389.1995.tb01818.x

    CAS  Article  Google Scholar 

  • Pérez Harguindeguy N, Blundo CM, Gurvich DE et al (2008) More than the sum of its parts? Assessing litter heterogeneity effects on the decomposition of litter mixtures through leaf chemistry. Plant Soil 303:151–159. doi:10.1007/s11104-007-9495-y

    Article  Google Scholar 

  • Perez G, Aubert M, Decaëns T et al (2013) Home-field advantage: a matter of interaction between litter biochemistry and decomposer biota. Soil Biol Biochem 67:245–254. doi:10.1016/j.soilbio.2013.09.004

    CAS  Article  Google Scholar 

  • Pérez-ramos IM, Roumet C, Cruz P et al (2012) Evidence for a “plant community economics spectrum ” driven by nutrient and water limitations in a Mediterranean rangeland of southern France. J Ecol 100:1315–1327. doi:10.1111/1365-2745.12000

    Article  Google Scholar 

  • Pérez-Ramos IIM, Volaire F, Fattet M et al (2013) Tradeoffs between functional strategies for resource-use and drought-survival in Mediterranean rangeland species. Environ Exp Bot 87:126–136. doi:10.1016/j.envexpbot.2012.09.004

    Article  Google Scholar 

  • Personeni E, Loiseau P (2004) How does the nature of living and dead roots affect the residence time of carbon in the root litter continuum? Plant Soil 267:129–141. doi:10.1007/s11104-005-4656-3

    CAS  Article  Google Scholar 

  • Pinheiro JC, Bates DM, DebRoy S et al (2014) Linear and nonlinear mixed effects models. R Packag. version 3.1-125

  • Prieto I, Stokes A, Roumet C (2016) Root functional parameters predict fine root decomposability at the community level. J Ecol 104:725–733. doi:10.1111/1365-2745.12537

    CAS  Article  Google Scholar 

  • R Development Core Team (2013) R: a language and environment for statistical computing

  • Reid JB, Goss MJ (1982) Suppression of decomposition of 14C-labelled plant roots in the presence of living roots of maize and perennial ryegrass. J Soil Sci 33:387–395

    CAS  Article  Google Scholar 

  • Robinson C, Kirkham J, Littlewood R (1999) Decomposition of root mixtures from high arctic plants: a microcosm study. Soil Biol Biochem 31:1101–1108

    CAS  Article  Google Scholar 

  • Robinson D, Davidson H, Trinder C, Brooker R (2010) Root-shoot growth responses during interspecific competition quantified using allometric modelling. Ann Bot 106:921–926. doi:10.1093/aob/mcq186

    Article  PubMed  PubMed Central  Google Scholar 

  • Romanowicz KJ, Freedman ZB, Upchurch RA et al (2016) Active microorganisms in forest soils differ from the total community yet are shaped by the same environmental factors: the influence of pH and soil moisture. FEMS Microbiol Ecol 92:1–9. doi:10.1093/femsec/fiw14

    Article  Google Scholar 

  • Roumet C, Picon-Cochard C, Dawson LA et al (2006) Quantifying species composition in root mixtures using two methods: near-infrared reflectance spectroscopy and plant wax markers. New Phytol 170:631–638. doi:10.1111/j.1469-8137.2006.01698.x

    CAS  Article  PubMed  Google Scholar 

  • Roumet C, Birouste M, Picon-Cochard C et al (2016) Root structure-function relationships in 74 species: evidence of a root economics spectrum related to carbon economy. New Phytol 210:815–826. doi:10.1111/nph.13828

    Article  PubMed  Google Scholar 

  • Salamanca EF, Kaneko N, Katagiri S (1998) Effects of leaf litter mixtures on the decomposition of Quercus serrata and Pinus densiflora using field and laboratory microcosm methods. Ecol Eng 10:53–73. doi:10.1016/S0925-8574(97)10020-9

    Article  Google Scholar 

  • Shi A, Penfold C, Marschner P (2012) Decomposition of roots and shoots of perennial grasses and annual barley—separately or in two residue mixes. Biol Fertil Soils 49:673–680. doi:10.1007/s00374-012-0760-8

    Article  Google Scholar 

  • Silver WLWWL, Miya RKR (2001) Global patterns in root decomposition: comparisons of climate and litter quality effects. Oecologia 129:407–419. doi:10.1007/s004420100740

    Article  PubMed  Google Scholar 

  • Smith SW, Woodin SJ, Pakeman RJ et al (2014) Root traits predict decomposition across a landscape-scale grazing experiment. New Phytol 203:851–862. doi:10.1111/nph.12845

    Article  PubMed  PubMed Central  Google Scholar 

  • Sparling G, Cheshire M, Mundie C (1982) Effect of barley plants on the decomposition of 14C‐labelled soil organic matter. J Soil Sci 33:89–100

    Article  Google Scholar 

  • Tardif A, Shipley B (2013) Using the biomass-ratio and idiosyncratic hypotheses to predict mixed-species litter decomposition. Ann Bot 111:135–141. doi:10.1093/aob/mcs241

    Article  PubMed  Google Scholar 

  • Van Der Krift T, Kuikman P, Berendse F (2002) The effect of living plants on root decomposition of four grass species. Oikos 96:36–45

    Article  Google Scholar 

  • Van Soest PJ (1963) Use of detergents in the analysis of fibrous feeds. A rapid method for the determination of fiber and lignin. J Assoc Off Agric Chem 46:829–835

    Google Scholar 

  • Vivanco L, Austin AT (2006) Intrinsic effects of species on leaf litter and root decomposition: a comparison of temperate grasses from North and South America. Oecologia 150:97–107. doi:10.1007/s00442-006-0495-z

    Article  PubMed  Google Scholar 

  • Wardle D, Bonner KI, Nicholson K (1997) Biodiversity and plant litter: experimental evidence which does not support the view that enhanced species richness improves ecosystem function. Oikos 79:247–258

    Article  Google Scholar 

  • Wardle DA, Bardgett RD, Klironomos JN et al (2004) Ecological linkages between aboveground and belowground biota. Science 304(80-):1629–1633. doi:10.1126/science.1094875

    CAS  Article  PubMed  Google Scholar 

  • Wardle DA, Yeates GW, Barker GM, Bonner KI (2006) The influence of plant litter diversity on decomposer abundance and diversity. Soil Biol Biochem 38:1052–1062. doi:10.1016/j.soilbio.2005.09.003

    CAS  Article  Google Scholar 

  • Zanne AE, Oberle B, Dunham KM et al (2015) A deteriorating state of affairs: how endogenous and exogenous factors determine plant decay rates. J Ecol 103:1421–1431. doi:10.1111/1365-2745.12474

    CAS  Article  Google Scholar 

  • Zhang D, Hui D, Luo Y, Zhou G (2008) Rates of litter decomposition in terrestrial ecosystems: global patterns and controlling factors. J Plant Ecol 1:85–93. doi:10.1093/jpe/rtn002

    Article  Google Scholar 

Download references

Acknowledgements

We thank Marie-Laure Navas for stimulating discussions, Pascal Chapon and Karim Barkaoui for their help in setting up and managing the field-experiment and Noelia Portillo for her help washing roots and preparing the litterbags. Thanks are due to the staff of the CEFE experimental field and of the Plateforme d’Analyses Chimiques en Ecologie (PACE) (technical facilities of the Labex Centre Méditerranéen de l’Environnement et de la Biodiversité). IP was funded by the Agence Nationale de la Recherche (Ecosfix ANR-10-STRA-003-001) and MB was funded by the Agence de l’Environnement et de la Maîtrise de l’Energie (ADEME) and the Centre International d’études supérieures en sciences agronomiques (Montpellier SupAgro). This work was funded by the Agence Nationale de la Recherche (projects O2LA, ANR-09-STRA-09 and Ecosfix, ANR-10-STRA-003-001).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Iván Prieto or Catherine Roumet.

Additional information

Responsible Editor: Duncan D. Cameron.

Iván Prieto and Catherine Roumet contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 4.50 mb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Prieto, I., Birouste, M., Zamora-Ledezma, E. et al. Decomposition rates of fine roots from three herbaceous perennial species: combined effect of root mixture composition and living plant community. Plant Soil 415, 359–372 (2017). https://doi.org/10.1007/s11104-016-3163-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-016-3163-z

Keywords

  • Living plant effects
  • Mediterranean species
  • Microbial activity
  • Non-additivity
  • Root decomposition
  • Root mixtures