Drought inhibits synergistic interactions of native and exotic litter mixtures during decomposition in temperate grasslands

Abstract

Background and aims

Leaf litters commonly interact during decomposition in ways that can synergistically increases rates of decay. These interactions have been linked to moisture availability, suggesting that drought could slow decomposition rates by disrupting litter interactions. Slowed decomposition may reduce competitive ability of exotic species that exploit rapid decomposition rates as part of niche construction mechanisms. Here, we evaluated the impacts of drought on interactions between native and exotic species’ litter decomposition.

Methods

We considered litter mixtures of Lupinus polyphyllus (exotic N-fixing forb), Trifolium pratense (native N-fixing forb), Senecio inaequidens (exotic non-N-fixing forb), and Senecio jacobaea (native non-N-fixing forb) with the native grass Alopecurus pratensis and evaluated the difference between the observed rate of decay and the one expected based on species decomposing in monocultures. Litters were deployed in Belgium and Germany and exposed to a 56 day drought, which resembled local millennium drought (statistical recurrence of duration in local precipitation series >1000 years).

Results

Litter interactions reduced mass remaining by 81% in Belgium and 15% in Germany, averaged across mixtures. Similarly, litter interactions reduced N remaining by 93% in Belgium and 14% in Germany. Drought consistently removed these interactions and resulted in additive litter decay. Litters of native and exotic species did not differ in their response to drought.

Conclusions

These findings support moisture availability as a key regulator of interactions between litters during decomposition. Thus, increasing frequency of drought may slow nutrient cycling to a greater extent than previously thought.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Aerts R (1997) Climate, leaf litter chemistry and leaf litter decomposition in terrestrial ecosystems: a triangular relationship. Oikos 79:439–449. doi:10.2307/3546886

    Article  Google Scholar 

  2. Arthur MA, Bray SR, Kuchle CR, McEwan RW (2012) The influence of the invasive shrub, Lonicera Maackii, on leaf decomposition and microbial community dynamics. Plant Ecol 213:1571–1582. doi:10.1007/s11258-012-0112-7

    Article  Google Scholar 

  3. Ashton I, Hyatt L, Howe K et al (2005) Invasive species accelerate decomposition and litter nitrogen loss in a mixed deciduous forest. Ecol Appl 15:1263–1272. doi:10.1890/04-0741

    Article  Google Scholar 

  4. Attiwill P, Adams M (1993) Nutrient cycling in forests. New Phytol 124:561–582. doi:10.1111/j.1469-8137.1993.tb03847.x

    CAS  Article  Google Scholar 

  5. Austin AT, Yahdjian L, Stark JM et al (2004) Water pulses and biogeochemical cycles in arid and semiarid ecosystems. Oecologia 141:221–235. doi:10.1007/s00442-004-1519-1

    Article  PubMed  Google Scholar 

  6. Ball BA, Bradford MA, Hunter MD (2009) Nitrogen and phosphorus release from mixed litter layers is lower than predicted from single species decay. Ecosystems 12:87–100. doi:10.1007/s10021-008-9208-2

    CAS  Article  Google Scholar 

  7. Cavaleri MA, Sack L (2010) Comparative water use of native and invasive plants at multiple scales: a global meta-analysis. Ecology 91:2705–2715. doi:10.1890/09-0582.1

    Article  PubMed  Google Scholar 

  8. Chen B-M, Peng S-L, D’Antonio CM et al (2013) Non-additive effects on decomposition from mixing litter of the invasive Mikania Micrantha H.B.K. With native plants. PLoS One 8:e66289. doi:10.1371/journal.pone.0066289

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  9. Dreesen FE, De Boeck HJ, Janssens IA, Nijs I (2012) Summer heat and drought extremes trigger unexpected changes in productivity of a temperate annual/biannual plant community. Environ Exp Bot 79:21–30. doi:10.1016/j.envexpbot.2012.01.005

    Article  Google Scholar 

  10. Easterling DR, Meehl GA, Parmesan C et al (2000) Climate extremes: observations, modeling, and impacts. Science 289:2068–2074. doi:10.1126/science.289.5487.2068

    CAS  Article  PubMed  Google Scholar 

  11. Ehrenfeld JG (2010) Ecosystem consequences of biological invasions. In: Futuyma D, Shafer H, Simberloff D (eds) Annual review of ecology, evolution, and systematics, vol 41. Annual Reviews, Palo Alto, pp 59–80

    Google Scholar 

  12. Ellenberg H, Leuschner C, Dierschke H (2010) Vegetation Mitteleuropas mit den Alpen in ökologischer, dynamischer und historischer Sicht, 6th edn. E. Ulmer, Stuttgart

    Google Scholar 

  13. Ernst WHO (1998) Invasion, dispersal and ecology of the south African neophyte Senecio inaequidens in the Netherlands: from wool alien to railway and road alien. Acta Bot Neerlandica Off Publ Ned Bot Ver 47:131–151

    Google Scholar 

  14. Finerty GE, de Bello F, Bílá K et al (2016) Exotic or not, leaf trait dissimilarity modulates the effect of dominant species on mixed litter decomposition. J Ecol. doi:10.1111/1365-2745.12602

    Google Scholar 

  15. Gartner TB, Cardon ZG (2004) Decomposition dynamics in mixed-species leaf litter. Oikos 104:230–246. doi:10.1111/j.0030-1299.2004.12738.x

    Article  Google Scholar 

  16. Hättenschwiler S, Tiunov AV, Scheu S (2005) Biodiversity and litter decomposition in terrestrial ecosystems. Annu Rev Ecol Evol Syst 36:191–218. doi:10.1146/annurev.ecolsys.36.112904.151932

    Article  Google Scholar 

  17. Heneghan L, Clay C, Brundage C (2002) Rapid decomposition of buckthorn litter may change soil nutrient levels. Ecol Restor 20:108–111

    Article  Google Scholar 

  18. Jentsch A (2013) Sending a SIGNAL – the mechanisms of grassland resilience. Res Media EU :21–23

  19. Jentsch A, Kreyling J, Elmer M et al (2011) Climate extremes initiate ecosystem-regulating functions while maintaining productivity. J Ecol 99:689–702. doi:10.1111/j.1365-2745.2011.01817.x

    Article  Google Scholar 

  20. Kinugasa T, Tsunekawa A, Shinoda M (2012) Increasing nitrogen deposition enhances post-drought recovery of grassland productivity in the Mongolian steppe. Oecologia 170:857–865. doi:10.1007/s00442-012-2354-4

    Article  PubMed  Google Scholar 

  21. Knorr M, Frey SD, Curtis PS (2005) Nitrogen additions and litter decomposition: a meta-analysis. Ecology 86:3252–3257

    Article  Google Scholar 

  22. Kreyling J, Beierkuhnlein C, Ellis L, Jentsch A (2008) Invasibility of grassland and heath communities exposed to extreme weather events: additive effects of diversity resistance and fluctuating physical environment. Oikos 117:1542–1554

    Article  Google Scholar 

  23. Kreyling J, Arfin Khan MAS, Sultana F et al (2016) Drought effects in climate change manipulation experiments: quantifying the influence of ambient weather conditions and rain-out shelter artifacts. Ecosystems. doi:10.1007/s10021-016-0025-8

    Google Scholar 

  24. Lee MR, Flory SL, Phillips RP (2012) Positive feedbacks to growth of an invasive grass through alteration of nitrogen cycling. Oecologia 170:457–465. doi:10.1007/s00442-012-2309-9

    Article  PubMed  Google Scholar 

  25. Liao J, Hou Z, Wang G (2002) Effects of elevated CO2 and drought on chemical composition and decomposition of spring wheat (Triticum Aestivum). Funct Plant Biol 29:891–897

    CAS  Article  Google Scholar 

  26. Liao C, Peng R, Luo Y et al (2008) Altered ecosystem carbon and nitrogen cycles by plant invasion: a meta-analysis. New Phytol 177:706–714. doi:10.1111/j.1469-8137.2007.02290.x

    CAS  Article  PubMed  Google Scholar 

  27. Liu P, Sun OJ, Huang J et al (2007) Nonadditive effects of litter mixtures on decomposition and correlation with initial litter N and P concentrations in grassland plant species of northern China. Biol Fertil Soils 44:211–216. doi:10.1007/s00374-007-0195-9

    Article  Google Scholar 

  28. Loydi A, Donath TW, Eckstein RL, Otte A (2015) Non-native species litter reduces germination and growth of resident forbs and grasses: allelopathic, osmotic or mechanical effects? Biol Invasions 17:581–595. doi:10.1007/s10530-014-0750-x

    Article  Google Scholar 

  29. Lummer D, Scheu S, Butenschoen O (2012) Connecting litter quality, microbial community and nitrogen transfer mechanisms in decomposing litter mixtures. Oikos 121:1649–1655. doi:10.1111/j.1600-0706.2011.20073.x

    CAS  Article  Google Scholar 

  30. Makkonen M, Berg MP, van Logtestijn RSP et al (2013) Do physical plant litter traits explain non-additivity in litter mixtures? A test of the improved microenvironmental conditions theory. Oikos 122:987–997. doi:10.1111/j.1600-0706.2012.20750.x

    Article  Google Scholar 

  31. McTiernan KB, Ineson P, Coward PA (1997) Respiration and nutrient release from tree leaf litter mixtures. Oikos 78:527–538. doi:10.2307/3545614

    Article  Google Scholar 

  32. Melillo JM, Aber JD, Muratore JF (1982) Nitrogen and lignin control of hardwood leaf litter decomposition dynamics. Ecology 63:621–626. doi:10.2307/1936780

    CAS  Article  Google Scholar 

  33. Olson JS (1963) Energy storage and the balance of producers and decomposers in ecological systems. Ecology 44:322–331. doi:10.2307/1932179

    Article  Google Scholar 

  34. Pfeifer-Meister L, Bridgham SD, Reynolds LL et al (2016) Climate change alters plant biogeography in Mediterranean prairies along the west coast, USA. Glob Change Biol 22:845–855. doi:10.1111/gcb.13052

    Article  Google Scholar 

  35. Poulette MM, Arthur MA (2012) The impact of the invasive shrub Lonicera Maackii on the decomposition dynamics of a native plant community. Ecol Appl 22:412–424. doi:10.1890/11-1105.1

    Article  PubMed  Google Scholar 

  36. R Core Team (2014) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  37. Reichstein M, Bahn M, Ciais P et al (2013) Climate extremes and the carbon cycle. Nature 500:287–295. doi:10.1038/nature12350

    CAS  Article  PubMed  Google Scholar 

  38. Robertson GP (1999) Standard soil methods for long-term ecological research. Oxford University Press, Oxford

    Google Scholar 

  39. Santonja M, Fernandez C, Gauquelin T, Baldy V (2015) Climate change effects on litter decomposition: intensive drought leads to a strong decrease of litter mixture interactions. Plant Soil 393:69–82. doi:10.1007/s11104-015-2471-z

    CAS  Article  Google Scholar 

  40. Scherer-Lorenzen M (2008) Functional diversity affects decomposition processes in experimental grasslands. Funct Ecol 22:547–555. doi:10.1111/j.1365-2435.2008.01389.x

    Article  Google Scholar 

  41. Schimel D (1995) Terrestrial ecosystems and the carbon-cycle. Glob Change Biol 1:77–91. doi:10.1111/j.1365-2486.1995.tb00008.x

    Article  Google Scholar 

  42. Schimel J, Balser TC, Wallenstein M (2007) Microbial stress-response physiology and its implications for ecosystem function. Ecology 88:1386–1394. doi:10.1890/06-0219

    Article  PubMed  Google Scholar 

  43. Schuster MJ, Dukes JS (2014) Non-additive effects of invasive tree litter shift seasonal N release: a potential invasion feedback. Oikos 123:1101–1111. doi:10.1111/oik.01078

    CAS  Article  Google Scholar 

  44. Smith MD (2011) An ecological perspective on extreme climatic events: a synthetic definition and framework to guide future research. J Ecol 99:656–663. doi:10.1111/j.1365-2745.2011.01798.x

    Article  Google Scholar 

  45. Stocker T, Qin D, Plattner G-K et al (2014) Climate change 2013: the physical science basis. Cambridge University Press, Cambridge and New York

    Google Scholar 

  46. Tardif A, Shipley B (2014) The relationship between functional dispersion of mixed-species leaf litter mixtures and species’ interactions during decomposition. Oikos. doi:10.1111/oik.01686

    Google Scholar 

  47. Vetter V, Jentsch A, Buhk C, et al. (submitted) A global legume invader shows high resistance towards extreme weather events and competition – implications for the future invasion success of Lupinus polyphyllus

  48. Vogel A, Fester T, Eisenhauer N et al (2013) Separating drought effects from roof artifacts on ecosystem processes in a grassland drought experiment. PLoS One. doi:10.1371/journal.pone.0070997

    Google Scholar 

  49. Walter J, Hein R, Beierkuhnlein C et al (2013) Combined effects of multifactor climate change and land-use on decomposition in temperate grassland. Soil Biol Biochem 60:10–18. doi:10.1016/j.soilbio.2013.01.018

    CAS  Article  Google Scholar 

  50. Wardle DA, Bonner KI, Nicholson KS (1997) Biodiversity and plant litter: experimental evidence which does not support the view that enhanced species richness improves ecosystem function. Oikos 79:247–258. doi:10.2307/3546010

    Article  Google Scholar 

  51. Wright JP, Jones CG (2006) The concept of organisms as ecosystem engineers ten years on: progress, limitations, and challenges. Bioscience 56:203–209. doi:10.1641/0006-3568(2006)056[0203:TCOOAE]2.0.CO;2

    Article  Google Scholar 

  52. Zhang D, Hui D, Luo Y, Zhou G (2008) Rates of litter decomposition in terrestrial ecosystems: global patterns and controlling factors. J Plant Ecol 1:85–93. doi:10.1093/jpe/rtn002

    Article  Google Scholar 

  53. Zhang L, Zhang Y, Zou J, Siemann E (2014) Decomposition of Phragmites Australis litter retarded by invasive Solidago Canadensis in mixtures: an antagonistic non-additive effect. Sci Rep. doi:10.1038/srep05488

    Google Scholar 

Download references

Acknowledgements

We would like to thank members of the SIGNAL collaboration (http://www.bayceer.uni-bayreuth.de/signal/) for use of their Belgian and German sites and Geert Bernaerts for assistance with environmental monitoring at the Belgian site. SIGNAL was funded by the ERA-Net BiodivERsA, with the national funders Belgian Science Policy Office (BELSPO), Bulgarian Science Fund (BNSF), Ministère de l’Écologie, du Développement durable et de l’Énergie de la République Française (MEDDE) and German Federal Ministry of Education and Research (BMBF), as part of the 2011 − 2012 BiodivERsA call for research proposals. MJS was advised by Jeffrey S. Dukes and supported by USDA Agro-ecosystem Services National Needs Fellowship and International Research Travel Allowance. We would also like to thank two anonymous reviewers for their role in improving the manuscript.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Michael J. Schuster.

Additional information

Responsible Editor: Per Ambus.

Electronic supplementary material

ESM 1

(PDF 937 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Schuster, M., Kreyling, J., Berwaers, S. et al. Drought inhibits synergistic interactions of native and exotic litter mixtures during decomposition in temperate grasslands. Plant Soil 415, 257–268 (2017). https://doi.org/10.1007/s11104-016-3162-0

Download citation

Keywords

  • Non-additive effect
  • Mixture
  • Climate change
  • Precipitation
  • Litter
  • Invasion
  • Invasive