Plant and Soil

, Volume 412, Issue 1–2, pp 115–132 | Cite as

Soil type determines how root and rhizosphere traits relate to phosphorus acquisition in field-grown maize genotypes

  • Ran ErelEmail author
  • Annette Bérard
  • Line Capowiez
  • Claude Doussan
  • Didier Arnal
  • Gérard Souche
  • André Gavaland
  • Christian Fritz
  • Eric J. W. Visser
  • Silvio Salvi
  • Chantal Le Marié
  • Andreas Hund
  • Philippe Hinsinger
Regular Article



Phosphorus (P) is frequently limiting crop production in agroecosystems. Large progress was achieved in understanding root traits associated with P acquisition efficiency (PAE, i.e. P uptake achieved under low P conditions). Most former studies were performed in controlled environments, and avoided the complexity of soil-root interactions. This may lead to an oversimplification of the root-soil relations. The aim of the present study was, therefore, to identify the dominant root and rhizosphere-related traits determining PAE, in contrasting soil conditions in the field.


Twenty-three maize hybrids were grown at two contrasting P levels of a long-term P-fertilizer trial in two adjacent soil types: alkaline and neutral. Bulk soil, rhizosphere and root parameters were studied in relation to plant P acquisition.


Soil type had robust effect on PAE. Hybrids’ performance in one soil type was not related to that in the other soil type. In the neutral soil, roots exhibited higher specific root length, higher root/shoot ratio but lower PAE. Best performing hybrids in the neutral soil were characterized by top soil exploration, i.e., greater root surface and topsoil foraging. In contrast, in the alkaline soil, PAE and foraging traits were not correlated, P availability in the rhizosphere was greater than the bulk soil and phosphatase activity was higher, suggesting a ‘mining strategy’ in that case (i.e. traits that facilitate elevated P availability).


These results indicate the key role of environmental factors for roots traits determining high PAE. The study highlights the need to consider soil properties when breeding for high PAE, as various soil types are likely to require different crop ideotypes.


Phosphorus acquisition Rhizosphere Root morphology Root architecture Maize 



This research received funding from the European Community Seventh Framework Programme FP7-KBBE-2011-5 under the grant agreement no.289300 (EURoot project). This work was also partially supported by a Chateaubriand fellowship awarded to Ran Erel from the French Ministère des Affaires Étrangères (France-Israel scientific exchange program). We kindly thank the donors of the genetic material: Department of Agroenvironmental Science and Technologies (DiSTA), University of Bologna, Italy (RootABA lines); Misión Biológica de Galicia (CSIC), Spain (EP52); Estación Experimental de Aula Dei (CSIC), Spain (EZ47, EZ11A, EZ37); Centro Investigaciones Agrarias de Mabegondo (CIAM), Spain (EC169); Misión Biológica de Galicia (CSIC), Spain, (EP52); University of Hohenheim, Versuchsstation für Pflanzenzüchtung, Germany (UH007, UH250); and INRA CNRS UPS AgroParisTech, France (supply of the remaining INRA and public lines). We also thank Dr. Hillary Voet for helpful statistical advice.

Supplementary material

11104_2016_3127_MOESM1_ESM.docx (20 kb)
ESM 1 (DOCX 19 kb)


  1. Bais HP, Weir TL, Perry LG, Gilroy S, Vivanco JM (2006) The role of root exudates in rhizophere interaction with plants and other organisms. Annu Rev Plant Biol 57:233–266. doi: 10.1146/annurev.arplant.57.032905.105159 CrossRefPubMedGoogle Scholar
  2. Bellon-Maurel V, Fernandez-Ahumada E, Palagos B, Roger J-M, McBratney A (2010) Critical review of chemometric indicators commonly used for assessing the quality of the prediction of soil attributes by NIR spectroscopy. TrAC Trends Anal Chem 29:1073–1081. doi: 10.1016/j.trac.2010.05.006 CrossRefGoogle Scholar
  3. Ben Sassi M, Dollinger J, Renault P, Tlili A, Bérard A (2012) The FungiResp method: an application of the MicroResp™ method to assess fungi in microbial communities as soil biological indicators. Ecol Indic 23:482–490. doi: 10.1016/j.ecolind.2012.05.002 CrossRefGoogle Scholar
  4. Bengough AG, Bransby MF, Hans J, McKenna SJ, Roberts TJ, Valentine TA (2006) Root responses to soil physical conditions; growth dynamics from field to cell. J Exp Bot 57:437–447. doi: 10.1093/jxb/erj003 CrossRefPubMedGoogle Scholar
  5. Bérard A, Ben Sassi M, Renault P, Gros R (2012) Severe drought-induced community tolerance to heat wave. An experimental study on soil microbial processes. J Soil Sediment 12:513–518. doi: 10.1007/s11368-012-0469-1 CrossRefGoogle Scholar
  6. Betencourt E, Duputel M, Colomb B, Desclaux D, Hinsinger P (2012) Intercropping promotes the ability of durum wheat and chickpea to increase rhizosphere phosphorus availability in a low P soil. Soil Biol Biochem 46:181–190. doi: 10.1016/j.soilbio.2011.11.015 CrossRefGoogle Scholar
  7. Bogrekci I, Lee WS (2005) Spectral phosphorus mapping using diffuse reflectance of soils and grass. Biosyst Eng 91:305–312. doi: 10.1016/j.biosystemseng.2005.04.015 CrossRefGoogle Scholar
  8. Bolan NS, Naidu R, Mahimairaja S, Baskaran S (1994) Influence of low-molecular-weight organic acids on the solubilization of phosphates. Biol Fertil Soils 18:311–319. doi: 10.1007/BF00570634 CrossRefGoogle Scholar
  9. Brunelle T, Dumas P, Souty F, Dorin B, Nadaud F (2015) Evaluating the impact of rising fertilizer prices on crop yields. Agric Econ 46:653–666CrossRefGoogle Scholar
  10. Colomb B, Kiniry JR, Debaeke P (2000) Effect of soil phosphorus on leaf development and senescence dynamics of field-grown maize. Agron J 92:428–435CrossRefGoogle Scholar
  11. Colomb B, Debaeke P, Jouany C, Nolot JM (2007) Phosphorus management in low input stockless cropping systems: crop and soil responses to contrasting P regimes in a 36-year experiment in southern France. Eur J Agron 26:154–165. doi: 10.1016/j.eja.2006.09.004 CrossRefGoogle Scholar
  12. Colombi T, Kirchgessner N, Le Marié C, York L, Lynch J, Hund A (2015) Next generation shovelomics: set up a tent and REST. Plant Soil 388:1–20. doi: 10.1007/s11104-015-2379-7 CrossRefGoogle Scholar
  13. Creamer RE, Stone D, Berry P, Kuiper I (2016) Measuring respiration profiles of soil microbial communities across Europe using MicroResp™ method. Appl Soil Ecol 97:36–43. doi: 10.1016/j.apsoil.2015.08.004 CrossRefGoogle Scholar
  14. Devau N, Hinsinger P, Le Cadre E, Colomb B, Gérard F (2011a) Fertilization and pH effects on processes and mechanisms controlling dissolved inorganic phosphorus in soils. Geochim Cosmochim Acta 75:2980–2996. doi: 10.1016/j.gca.2011.02.034 CrossRefGoogle Scholar
  15. Devau N, Hinsinger P, Le Cadre E, Gérard F (2011b) Root-induced processes controlling phosphate availability in soils with contrasted P-fertilized treatments. Plant Soil 348:203–218CrossRefGoogle Scholar
  16. Dick WA, Cheng L, Wang P (2000) Soil acid and alkaline phosphatase activity as pH adjustment indicators. Soil Biol Biochem 32:1915–1919. doi: 10.1016/S0038-0717(00)00166-8 CrossRefGoogle Scholar
  17. Duputel M, Van Hoye F, Toucet J, Gérard F (2013) Citrate adsorption can decrease soluble phosphate concentration in soil: experimental and modeling evidence. Appl Geochem 39:85–92. doi: 10.1016/j.apgeochem.2013.09.017 CrossRefGoogle Scholar
  18. Enns LC, McCully ME, Canny MJ (2006) Branch roots of young maize seedlings, their production, growth, and phloem supply from the primary root. Funct Plant Biol 33:391–399. doi: 10.1071/FP06029 CrossRefGoogle Scholar
  19. Fernandez MC, Rubio G (2015) Root morphological traits related to phosphorus-uptake efficiency of soybean, sunflower, and maize. J Plant Nutr Soil Sci : n/a-n/a. doi: 10.1002/jpln.201500155 Google Scholar
  20. Fernandez M, Belinque H, Boem FG, Rubio G (2009) Compared phosphorus efficiency in soybean, sunflower and maize. J Plant Nutr 32:2027–2043CrossRefGoogle Scholar
  21. Fu W, Zhao K, Jiang P, Ye Z, Tunney H, Zhang C (2013a) Field-scale variability of soil test phosphorus and other nutrients in grasslands under long-term agricultural managements. Soil Res 51:503–512. doi: 10.1071/SR13027 CrossRefGoogle Scholar
  22. Fu W, Zhao K, Tunney H, Zhang C (2013b) Using GIS and Geostatistics to optimize soil phosphorus and magnesium sampling in temperate grassland. Soil Sci 178:240–247. doi: 10.1097/SS.0b013e31829d463b CrossRefGoogle Scholar
  23. George TS, Gregory PJ, Wood M, Read D, Buresh RJ (2002) Phosphatase activity and organic acids in the rhizosphere of potential agroforestry species and maize. Soil Biol Biochem 34:1487–1494. doi: 10.1016/S0038-0717(02)00093-7 CrossRefGoogle Scholar
  24. Griffiths BS, Spilles A, Bonkowski M (2012) C: N: P stoichiometry and nutrient limitation of the soil microbial biomass in a grazed grassland site under experimental P limitation or excess. Ecol Process 1:1–11CrossRefGoogle Scholar
  25. Haling R, Richardson A, Culvenor R, Lambers H, Simpson R (2010) Root morphology, root-hair development and rhizosheath formation on perennial grass seedlings is influenced by soil acidity. Plant Soil 335:457–468. doi: 10.1007/s11104-010-0433-z CrossRefGoogle Scholar
  26. Heffer P (2009) Assessment of fertilizer use by crop at the global level: 2006/07–2007/08. International Fertilizer Industry Association, ParisGoogle Scholar
  27. Hinsinger P (2001) Bioavailability of soil inorganic P in the rhizosphere as affected by root-induced chemical changes: a review. Plant Soil 237:173–195. doi: 10.1023/A:1013351617532 CrossRefGoogle Scholar
  28. Hinsinger P, Plassard C, Tang C, Jaillard B (2003) Origins of root-mediated pH changes in the rhizosphere and their responses to environmental constraints: a review. Plant Soil 248:43–59. doi: 10.1023/A:1022371130939 CrossRefGoogle Scholar
  29. Hinsinger P, Bengough AG, Vetterlein D, Young I (2009) Rhizosphere: biophysics, biogeochemistry and ecological relevance. Plant Soil 321:117–152. doi: 10.1007/s11104-008-9885-9 CrossRefGoogle Scholar
  30. Hinsinger P, Brauman A, Devau N, Gérard F, Jourdan C, Laclau J-P, Le Cadre E, Jaillard B, Plassard C (2011) Acquisition of phosphorus and other poorly mobile nutrients by roots. Where do plant nutrition models fail? Plant Soil 348:29–61CrossRefGoogle Scholar
  31. Hodge A, Berta G, Doussan C, Merchan F, Crespi M (2009) Plant root growth, architecture and function. Plant Soil 321:153–187. doi: 10.1007/s11104-009-9929-9 CrossRefGoogle Scholar
  32. Lambers H, Shane MW, Cramer MD, Pearse SJ, Veneklaas EJ (2006) Root structure and functioning for efficient Acquisition of Phosphorus: matching morphological and physiological traits. Ann Bot 98:693–713. doi: 10.1093/aob/mcl114 CrossRefPubMedPubMedCentralGoogle Scholar
  33. Liu Y, Mi G, Chen F, Zhang J, Zhang F (2004) Rhizosphere effect and root growth of two maize (Zea mays L.) genotypes with contrasting P efficiency at low P availability. Plant Sci 167:217–223. doi: 10.1016/j.plantsci.2004.02.026 CrossRefGoogle Scholar
  34. Lynch J (1995) Root architecture and plant productivity. Plant Physiol 109:7–13CrossRefPubMedPubMedCentralGoogle Scholar
  35. Lynch JP (2007) Roots of the second green revolution. Aust J Bot 55:493–512. doi: 10.1071/BT06118 CrossRefGoogle Scholar
  36. Lynch JP (2011) Root Phenes for enhanced soil exploration and phosphorus acquisition: tools for future crops. Plant Physiol 156:1041–1049. doi: 10.1104/pp.111.175414 CrossRefPubMedPubMedCentralGoogle Scholar
  37. Lynch J, Brown K (2001) Topsoil foraging – an architectural adaptation of plants to low phosphorus availability. Plant Soil 237:225–237. doi: 10.1023/A:1013324727040 CrossRefGoogle Scholar
  38. Mollier A, Pellerin S (1999) Maize root system growth and development as influenced by phosphorus deficiency. J Exp Bot 50:487–497. doi: 10.1093/jxb/50.333.487 CrossRefGoogle Scholar
  39. Nadeem M, Mollier A, Morel C, Prud’homme L, Vives A, Pellerin S (2014) Remobilization of seed phosphorus reserves and their role in attaining phosphorus autotrophy in maize (Zea mays L.) seedlings. Seed Sci Res 24:187–194. doi: 10.1017/S0960258514000105 CrossRefGoogle Scholar
  40. Neumann G, Römheld V (1999) Root excretion of carboxylic acids and protons in phosphorus-deficient plants. Plant Soil 211:121–130. doi: 10.1023/A:1004380832118 CrossRefGoogle Scholar
  41. Niu YF, Chai RS, Jin GL, Wang H, Tang CX, Zhang YS (2012) Responses of root architecture development to low phosphorus availability: a review. Ann Bot. doi: 10.1093/aob/mcs285 PubMedPubMedCentralGoogle Scholar
  42. Olsen SR, Cole C, Watanabe F, Dean L (1954) Estimation of available phosphorus in soils by extraction with sodium bicarbonate. In: USDA (ed) . US Government Printing Office, Circular939, WashingtonGoogle Scholar
  43. Penuelas J, Poulter B, Sardans J, Ciais P, van der Velde M, Bopp L, Boucher O, Godderis Y, Hinsinger P, Llusia J, Nardin E, Vicca S, Obersteiner M, Janssens IA (2013) Human-induced nitrogen-phosphorus imbalances alter natural and managed ecosystems across the globe. Nat Commun 4:2934. doi: 10.1038/ncomms3934 PubMedGoogle Scholar
  44. Péret B, Desnos T, Jost R, Kanno S, Berkowitz O, Nussaume L (2014) Root architecture responses: in search of phosphate. Plant Physiol 166:1713–1723. doi: 10.1104/pp.114.244541 CrossRefPubMedPubMedCentralGoogle Scholar
  45. Pokarzhevskii AD, van Straalen NM, Zaboev DP, Zaitsev AS (2003) Microbial links and element flows in nested detrital food-webs. Pedobiologia 47:213–224. doi: 10.1078/0031-4056-00185 CrossRefGoogle Scholar
  46. Rejsek K, Vranova V, Pavelka M, Formanek P (2012) Acid phosphomonoesterase (E.C. location in soil. J Plant Nutr Soil Sci 175:196–211. doi: 10.1002/jpln.201000139 CrossRefGoogle Scholar
  47. Richardson AE, Simpson RJ (2011) Soil microorganisms mediating phosphorus availability update on microbial phosphorus. Plant Physiol 156:989–996. doi: 10.1104/pp.111.175448 CrossRefPubMedPubMedCentralGoogle Scholar
  48. Richardson A, Barea J-M, McNeill A, Prigent-Combaret C (2009) Acquisition of phosphorus and nitrogen in the rhizosphere and plant growth promotion by microorganisms. Plant Soil 321:305–339. doi: 10.1007/s11104-009-9895-2 CrossRefGoogle Scholar
  49. Richardson A, Lynch J, Ryan P, Delhaize E, Smith FA, Smith S, Harvey P, Ryan M, Veneklaas E, Lambers H, Oberson A, Culvenor R, Simpson R (2011) Plant and microbial strategies to improve the phosphorus efficiency of agriculture. Plant Soil 349:121–156. doi: 10.1007/s11104-011-0950-4 CrossRefGoogle Scholar
  50. Rose TJ, Impa SM, Rose MT, Pariasca-Tanaka J, Mori A, Heuer S, Johnson-Beebout SE, Wissuwa M (2013) Enhancing phosphorus and zinc acquisition efficiency in rice: a critical review of root traits and their potential utility in rice breeding. Ann Bot 112:331–345. doi: 10.1093/aob/mcs217 CrossRefPubMedGoogle Scholar
  51. Schachtman DP, Reid RJ, Ayling SM (1998) Phosphorus uptake by plants: from soil to cell. Plant Physiol 116:447–453. doi: 10.1104/pp.116.2.447 CrossRefPubMedPubMedCentralGoogle Scholar
  52. Shenoy VV, Kalagudi GM (2005) Enhancing plant phosphorus use efficiency for sustainable cropping. Biotechnol Adv 23:501–513. doi: 10.1016/j.biotechadv.2005.01.004 CrossRefPubMedGoogle Scholar
  53. Simpson R, Oberson A, Culvenor R, Ryan M, Veneklaas E, Lambers H, Lynch J, Ryan P, Delhaize E, Smith FA, Smith S, Harvey P, Richardson A (2011) Strategies and agronomic interventions to improve the phosphorus-use efficiency of farming systems. Plant Soil 349:89–120. doi: 10.1007/s11104-011-0880-1 CrossRefGoogle Scholar
  54. Tabatabai MA, Bremner JM (1969) Use of p-nitrophenyl phosphate for assay of soil phosphatase activity. Soil Biol Biochem 1:301–307. doi: 10.1016/0038-0717(69)90012-1 CrossRefGoogle Scholar
  55. Trachsel S, Kaeppler S, Brown K, Lynch J (2011) Shovelomics: high throughput phenotyping of maize (Zea mays L.) root architecture in the field. Plant Soil 341:75–87. doi: 10.1007/s11104-010-0623-8 CrossRefGoogle Scholar
  56. Treseder K (2013) The extent of mycorrhizal colonization of roots and its influence on plant growth and phosphorus content. Plant Soil 371:1–13. doi: 10.1007/s11104-013-1681-5 CrossRefGoogle Scholar
  57. USDA (1954) Diagnosis and improvement of saline and alkali soils. US Department of Agriculture, Washington, DCGoogle Scholar
  58. Van Der Heijden MGA, Bardgett RD, Van Straalen NM (2008) The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecol Lett 11:296–310. doi: 10.1111/j.1461-0248.2007.01139.x CrossRefPubMedGoogle Scholar
  59. Vance CP, Uhde-Stone C, Allan DL (2003) Phosphorus acquisition and use: critical adaptations by plants for securing a nonrenewable resource. New Phytol 157:423–447CrossRefGoogle Scholar
  60. Veneklaas E, Stevens J, Cawthray G, Turner S, Grigg A, Lambers H (2003) Chickpea and white lupin rhizosphere carboxylates vary with soil properties and enhance phosphorus uptake. Plant Soil 248:187–197. doi: 10.1023/A:1022367312851 CrossRefGoogle Scholar
  61. Wakelin S, Macdonald LM, Rogers SL, Gregg AL, Bolger TP, Baldock JA (2008) Habitat selective factors influencing the structural composition and functional capacity of microbial communities in agricultural soils. Soil Biol Biochem 40:803–813CrossRefGoogle Scholar
  62. Weerarathne LVY, Suriyagoda LDB, Marambe B (2015) Barnyard grass (Echinochloa crus-galli (L.) P.Beauv) is less competitive on rice (Oryza sativa L.) when phosphorus (P) is applied to deeper layers in P-deficient and moisture-limited soils. Plant Soil 391:1–17. doi: 10.1007/s11104-015-2383-y CrossRefGoogle Scholar
  63. White PJ, George TS, Gregory PJ, Bengough AG, Hallett PD, McKenzie BM (2013) Matching roots to their environment. Ann Bot 112:207–222. doi: 10.1093/aob/mct123 CrossRefPubMedPubMedCentralGoogle Scholar
  64. Wissuwa M (2003) How do plants achieve tolerance to phosphorus deficiency? Small causes with big effects. Plant Physiol 133:1947–1958. doi: 10.1104/pp.103.029306 CrossRefPubMedPubMedCentralGoogle Scholar
  65. Wissuwa M, Ae N (2001) Further characterization of two QTLs that increase phosphorus uptake of rice ( Oryza sativa L.) under phosphorus deficiency. Plant Soil 237:275–286. doi: 10.1023/A:1013385620875 CrossRefGoogle Scholar
  66. Wissuwa M, Mazzola M, Picard C (2009) Novel approaches in plant breeding for rhizosphere-related traits. Plant Soil 321:409–430. doi: 10.1007/s11104-008-9693-2 CrossRefGoogle Scholar
  67. Zhu J, Lynch JP (2004) The contribution of lateral rooting to phosphorus acquisition efficiency in maize (Zea mays) seedlings. Funct Plant Biol 31:949–958. doi: 10.1071/FP04046 CrossRefGoogle Scholar
  68. Zhu J, Kaeppler SM, Lynch JP (2005) Topsoil foraging and phosphorus acquisition efficiency in maize (Zea mays). Funct Plant Biol 32:749–762. doi: 10.1071/FP05005 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Ran Erel
    • 1
    • 2
    Email author
  • Annette Bérard
    • 3
  • Line Capowiez
    • 3
  • Claude Doussan
    • 3
  • Didier Arnal
    • 1
  • Gérard Souche
    • 1
  • André Gavaland
    • 4
  • Christian Fritz
    • 5
  • Eric J. W. Visser
    • 5
  • Silvio Salvi
    • 6
  • Chantal Le Marié
    • 7
  • Andreas Hund
    • 7
  • Philippe Hinsinger
    • 1
  1. 1.INRA, UMR Eco&SolsMontpellierFrance
  2. 2.Gilat Research Center, Mobile Post NegevNegevIsrael
  3. 3.INRA, UMR1114 EMMAHAvignonFrance
  4. 4.INRA, UE AuzevilleCastanet TolosanFrance
  5. 5.Department of Experimental Plant EcologyRUN-Radboud University NijmegenNijmegenThe Netherlands
  6. 6.Dipartimento di Scienze Agrarie (DipSA)Universita’ di BolognaBolognaItaly
  7. 7.Institute of Plant Science, ETH Zurich, LFW A8ZurichSwitzerland

Personalised recommendations