Plant and Soil

, Volume 414, Issue 1–2, pp 159–170 | Cite as

Nitrogen deposition decreases the benefits of symbiosis in a native legume

  • J. U. Regus
  • C. E. Wendlandt
  • R. M. Bantay
  • K. A. Gano-Cohen
  • N. J. Gleason
  • A. C. Hollowell
  • M. R. O’Neill
  • K. K. Shahin
  • J. L. SachsEmail author
Regular Article



Anthropogenic nitrogen deposition can provide legumes with a cheap source of nitrogen relative to symbiotic nitrogen fixation, leading to the potential breakdown of this critical symbiosis. Here, the effects of nitrogen deposition were tested on a native symbiosis between legumes and rhizobia.


Deposition rates, soil nitrogen concentration, and plant nitrogen isotopic composition were quantified along a predicted deposition gradient in California. Acmispon strigosus seedlings were exposed to fertilization spanning nitrogen concentrations observed in the plant’s California range. Both wild and experimental plants from pristine and nitrogen polluted sites were tested using rhizobial strains that varied in nitrogen fixation.


Deposition intensity was tightly correlated with nitrogen concentration in soils. The growth benefits of rhizobial nodulation were dramatically reduced by even modest levels of mineral nitrogen, and all Acmispon lines failed to form root nodules at high nitrogen concentrations.


Our dataset suggests that anthropogenic deposition has greatly increased soil nitrogen concentrations in Southern California leading to significantly reduced benefits of rhizobial symbiosis. If nitrogen deposition increases continue, plant host mortality and a total collapse of the symbiosis could result.


Anthropogenic nitrogen deposition Biological nitrogen fixation Legume rhizobium symbiosis Mutualism breakdown 



We acknowledge the U.C. Natural Reserve System and Bodega Marine Reserve in particular. This research was supported by NSF DEB-1150278 to JLS and Mildred E. Mathias Graduate Student Research Award to JUR.

Supplementary material

11104_2016_3114_MOESM1_ESM.xlsx (34 kb)
Supplemental Table 1 (XLSX 34 kb)
11104_2016_3114_MOESM2_ESM.xlsx (60 kb)
Supplemental Table 2 (XLSX 60 kb)
11104_2016_3114_MOESM3_ESM.xlsx (36 kb)
Supplemental Table 3 (XLSX 35 kb)
11104_2016_3114_MOESM4_ESM.xlsx (61 kb)
Supplemental Table 4 (XLSX 61 kb)


  1. Akcay E, Simms EL (2011) Negotiation, sanctions, and context dependency in the legume-rhizobium mutualism. Am Nat 178(1):1–14CrossRefPubMedGoogle Scholar
  2. Bobbink R, Hicks K, Galloway J, Spranger T, Alkemade R, Ashmore M, Bustamante M, Cinderby S, Davidson E, Dentener F, Emmett B, Erisman JW, Fenn M, Gilliam F, Nordin A, Pardo L, De Vries W (2010) Global assessment of nitrogen deposition effects on terrestrial plant diversity: a synthesis. Ecol Appl 20(1):30–59CrossRefPubMedGoogle Scholar
  3. Bremner J (1965) Organic Nitrogen in Soils. In: Bartholomew WV, Clark FE (eds) Soil Nitrogen. American Society of Agronomy Inc., Madison, pp. 93–132Google Scholar
  4. Bytnerowicz A, Fenn ME (1996) Nitrogen deposition in California forests: a review. Environ Pollut 92(2):127–146CrossRefPubMedGoogle Scholar
  5. Bytnerowicz A, Tausz M, Alonso R, Jones D, Johnson R, Grulke N (2002) Summer-time distribution of air pollutants in sequoia National Park, California. Environ Pollut 118(2):187–203CrossRefPubMedGoogle Scholar
  6. Carroll JA, Caporn SJM, Johnson D, Morecroft MD, Lee JA (2003) The interactions between plant growth, vegetation structure and soil processes in semi-natural acidic and calcareous grasslands receiving long-term inputs of simulated pollutant nitrogen deposition. Environ Pollut 121(3):363–376CrossRefPubMedGoogle Scholar
  7. Clark CM, Tilman D (2008) Loss of plant species after chronic low-level nitrogen deposition to prairie grasslands. Nature 451(7179):712–715CrossRefPubMedGoogle Scholar
  8. Cleveland CC, Townsend AR, Schimel DS, Fisher H, Howarth RW, Hedin LO, Perakis SS, Latty EF, Von Fischer JC, Elseroad A, Wasson MF (1999) Global patterns of terrestrial biological nitrogen (N-2) fixation in natural ecosystems. Glob Biogeochem Cycles 13(2):623–645CrossRefGoogle Scholar
  9. Dentener F, Drevet J, Lamarque JF, Bey I, Eickhout B, Fiore AM, Hauglustaine D, Horowitz LW, Krol M, Kulshrestha UC, Lawrence M, Galy-Lacaux C, Rast S, Shindell D, Stevenson D, Van Noije T, Atherton C, Bell N, Bergman D, Butler T, Cofala J, Collins B, Doherty R, Ellingsen K, Galloway J, Gauss M, Montanaro V, Mueller JF, Pitari G, Rodriguez J, Sanderson M, Solmon F, Strahan S, Schultz M, Sudo K, Szopa S, Wild O (2006) Nitrogen and sulfur deposition on regional and global scales: a multimodel evaluation. Glob Biogeochem Cycles 20(4):GB4003CrossRefGoogle Scholar
  10. Egerton-Warburton LM, Graham RC, Allen EB, Allen MF (2001) Reconstruction of the historical changes in mycorrhizal fungal communities under anthropogenic nitrogen deposition. Proceedings of the Royal Society B-Biological Sciences 268(1484):2479–2484CrossRefPubMedCentralGoogle Scholar
  11. EPA (2012) CASTNET 2010 annual report, clean air status and trends network. EPA Contract No. EP-W-09-028Google Scholar
  12. Fenn ME, Allen EB, Weiss SB, Jovan S, Geiser LH, Tonnesen GS, Johnson RF, Rao LE, Gimeno BS, Yuan F, Meixner T, Bytnerowicz A (2010) Nitrogen critical loads and management alternatives for N-impacted ecosystems in California. J Environ Manag 91(12):2404–2423CrossRefGoogle Scholar
  13. Galloway JN, Dentener FJ, Capone DG, Boyer EW, Howarth RW, Seitzinger SP, Asner GP, Cleveland CC, Green PA, Holland EA, Karl DM, Michaels AF, Porter JH, Townsend AR, Vorosmarty CJ (2004) Nitrogen cycles: past, present, and future. Biogeochemistry 70(2):153–226CrossRefGoogle Scholar
  14. Galloway JN, Townsend AR, Erisman JW, Bekunda M, Cai Z, Freney JR, Martinelli LA, Seitzinger SP, Sutton MA (2008) Transformation of the nitrogen cycle: recent trends, questions, and potential solutions. Science 320(5878):889–892CrossRefPubMedGoogle Scholar
  15. Galloway JN, Leach AM, Bleeker A, Erisman JW (2013) A chronology of human understanding of the nitrogen cycle. Philos Trans R Soc B Biol Sci 368(1621)Google Scholar
  16. Hanson PJ, Lindberg SE (1991) Dry deposition of reactive nitrogen-compounds - a review of leaf, canopy and non-foliar measurements. Atmos Environ A Gen Top 25(8):1615–1634CrossRefGoogle Scholar
  17. Heath KD, Stock AJ, Stinchcombe JR (2010) Mutualism variation in the nodulation response to nitrate. J Evol Biol 23(11):2494–2500CrossRefPubMedGoogle Scholar
  18. Heil M, Hilpert A, Kaiser W, Linsenmair KE (2000) Reduced growth and seed set following chemical induction of pathogen defence: does systemic acquired resistance (SAR) incur allocation costs? J Ecol 88(4):645–654CrossRefGoogle Scholar
  19. Herridge DF, Danso SKA (1995) Enhancing crop legume N-2 fixation through selection and breeding. Plant Soil 174(1–2):51–82CrossRefGoogle Scholar
  20. Hobbie SE, Eddy WC, Buyarski CR, Adair EC, Ogdahl ML, Weisenhorn P (2012) Response of decomposing litter and its microbial community to multiple forms of nitrogen enrichment. Ecol Monogr 82(3):389–405CrossRefGoogle Scholar
  21. Hoeksema JD, Chaudhary VB, Gehring CA, Johnson NC, Karst J, Koide RT, Pringle A, Zabinski C, Bever JD, Moore JC, Wilson GWT, Klironomos JN, Umbanhowar J (2010) A meta-analysis of context-dependency in plant response to inoculation with mycorrhizal fungi. Ecol Lett 13(3):394–407CrossRefPubMedGoogle Scholar
  22. Holtgrieve GW, Schindler DE, Hobbs WO, Leavitt PR, Ward EJ, Bunting L, Chen G, Finney BP, Gregory-Eaves I, Holmgren S, Lisac MJ, Lisi PJ, Nydick K, Rogers LA, Saros JE, Selbie DT, Shapley MD, Walsh PB, Wolfe AP (2011) A coherent signature of anthropogenic nitrogen deposition to remote watersheds of the northern hemisphere. Science 334(6062):1545–1548CrossRefPubMedGoogle Scholar
  23. Janssens IA, Dieleman W, Luyssaert S, Subke JA, Reichstein M, Ceulemans R, Ciais P, Dolman AJ, Grace J, Matteucci G, Papale D, Piao SL, Schulze ED, Tang J, Law BE (2010) Reduction of forest soil respiration in response to nitrogen deposition. Nat Geosci 3(5):315–322CrossRefGoogle Scholar
  24. Johnson NC, Graham JH, Smith FA (1997) Functioning of mycorrhizal associations along the mutualism-parasitism continuum. New Phytol 135(4):575–586CrossRefGoogle Scholar
  25. Kamble PN, Rousk J, Frey SD, Baath E (2013) Bacterial growth and growth-limiting nutrients following chronic nitrogen additions to a hardwood forest soil. Soil Biol Biochem 59:32–37CrossRefGoogle Scholar
  26. Kiers ET, Hutton MG, Denison RF (2007) Human selection and the relaxation of legume defences against ineffective rhizobia. Proc R Soc B Biol Sci 274(1629):3119–3126CrossRefGoogle Scholar
  27. Kiers ET, Palmer TM, Ives AR, Bruno JF, Bronstein JL (2010) Mutualisms in a changing world: an evolutionary perspective. Ecol Lett 13(12):1459–1474CrossRefGoogle Scholar
  28. Kivlin SN, Emery SM, Rudgers JA (2013) Fungal symbionts alter plant responses to global change. Am J Bot 100(7):1445–1457CrossRefPubMedGoogle Scholar
  29. Maskell LC, Firbank LG, Thompson K, Bullock JM, Smart SM (2006) Interactions between non-native plant species and the floristic composition of common habitats. J Ecol 94(6):1052–1060CrossRefGoogle Scholar
  30. Maskell LC, Smart SM, Bullock JM, Thompson K, Stevens CJ (2010) Nitrogen deposition causes widespread loss of species richness in British habitats. Glob Chang Biol 16(2):671–679CrossRefGoogle Scholar
  31. Padgett PE, Bytnerowicz A (2001) Deposition and adsorption of the air pollutant HNO3 vapor to soil surfaces. Atmos Environ 35(13):2405–2415CrossRefGoogle Scholar
  32. Padgett PE, Allen EB, Bytnerowicz A, Minich RA (1999) Changes in soil inorganic nitrogen as related to atmospheric nitrogenous pollutants in southern California. Atmos Environ 33(5):769–781CrossRefGoogle Scholar
  33. Regus JU, Gano KA, Hollowell AC, Sachs JL (2014) Efficiency of partner choice and sanctions in Lotus is not altered by nitrogen fertilization. Proc R Soc B Biol Sci 281(1781):20132587Google Scholar
  34. Regus JU, Gano KA, Hollowell AC, Sofish V, Sachs JL (2015) Lotus hosts delimit the mutualism-parasitism continuum of Bradyrhizobium. J Evol Biol 28(2):447–456Google Scholar
  35. Roem WJ, Klees H, Berendse F (2002) Effects of nutrient addition and acidification on plant species diversity and seed germination in heathland. J Appl Ecol 39(6):937–948CrossRefGoogle Scholar
  36. Sachs JL, Simms EL (2006) Pathways to mutualism breakdown. Trends Ecol Evol 21(10):585–592CrossRefPubMedGoogle Scholar
  37. Sachs JL, Kembel SW, Lau AH, Simms EL (2009) In situ phylogenetic structure and diversity of wild Bradyrhizobium communities. Appl Environ Microbiol 75(14):4727–4735CrossRefPubMedPubMedCentralGoogle Scholar
  38. Sachs JL, Ehinger MO, Simms EL (2010a) Origins of cheating and loss of symbiosis in wild Bradyrhizobium. J Evol Biol 23(5):1075–1089CrossRefPubMedGoogle Scholar
  39. Sachs JL, Russell JE, Lii YE, Black KC, Lopez G, Patil AS (2010b) Host control over infection and proliferation of a cheater symbiont. J Evol Biol 23(9):1919–1927CrossRefPubMedGoogle Scholar
  40. Sachs JL, Russell JE, Hollowell AC (2011) Evolutionary instability of symbiotic function in Bradyrhizobium japonicum. PLoS One 6(11):e26370CrossRefPubMedPubMedCentralGoogle Scholar
  41. Santiago LS, Schuur EAG, Silvera K (2005) Nutrient cycling and plant-soil feedbacks along a precipitation gradient in lowland Panama. J Trop Ecol 21:461–470CrossRefGoogle Scholar
  42. Somasegaran P, Hoben J (1994) Handbook for rhizobia. Springer-Verlag, New YorkCrossRefGoogle Scholar
  43. Streeter J (1988) Inhibition of legume nodule formation and n-2 fixation by nitrate. Crc Crit Rev Plant Sci 7(1):1–23CrossRefGoogle Scholar
  44. Ti C, Pan J, Xia Y, Yan X (2012) A nitrogen budget of mainland China with spatial and temporal variation. Biogeochemistry 108(1–3):381–394CrossRefGoogle Scholar
  45. Tu L-H, Hu H-L, Chen G, Peng Y, Xiao Y-L, Hu T-X, Zhang J, Li X-W, Liu L, Tang Y (2014) Nitrogen addition significantly affects Forest litter decomposition under high levels of ambient nitrogen deposition. PLoS One 9(2):e88752CrossRefPubMedPubMedCentralGoogle Scholar
  46. Vitousek PM, Aber JD, Howarth RW, Likens GE, Matson PA, Schindler DW, Schlesinger WH, Tilman D (1997) Human alteration of the global nitrogen cycle: sources and consequences. Ecol Appl 7(3):737–750Google Scholar
  47. Voisin AS, Salon C, Munier-Jolain NG, Ney B (2002) Effect of mineral nitrogen on nitrogen nutrition and biomass partitioning between the shoot and roots of pea (Pisum sativum L.). Plant Soil 242(2):251–262CrossRefGoogle Scholar
  48. Vourlitis GL, Zorba G, Pasquini SC, Mustard R (2007) Chronic nitrogen deposition enhances nitrogen mineralization potential of semiarid shrubland soils. Soil Sci Soc Am J 71(3):836–842CrossRefGoogle Scholar
  49. Wanek W, Arndt SK (2002) Difference in delta N-15 signatures between nodulated roots and shoots of soybean is indicative of the contribution of symbiotic N-2 fixation to plant N. J Exp Bot 53(371):1109–1118CrossRefPubMedGoogle Scholar
  50. Weese DJ, Heath KD, Dentinger BTM, Lau JA (2015) Long-term nitrogen addition causes the evolution of less-cooperative mutualists. Evolution 69(3):631–642CrossRefPubMedGoogle Scholar
  51. Zhang L, Brook JR, Vet R (2003) A revised parameterization for gaseous dry deposition in air-quality models. Atmos Chem Phys 3:2067–2082CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • J. U. Regus
    • 1
  • C. E. Wendlandt
    • 2
  • R. M. Bantay
    • 1
  • K. A. Gano-Cohen
    • 1
  • N. J. Gleason
    • 1
  • A. C. Hollowell
    • 1
    • 3
  • M. R. O’Neill
    • 1
  • K. K. Shahin
    • 1
  • J. L. Sachs
    • 1
    • 2
    • 3
    Email author
  1. 1.Department of BiologyUniversity of CaliforniaRiversideUSA
  2. 2.Department of Botany and Plant SciencesUniversity of CaliforniaRiversideUSA
  3. 3.Institute for Integrative Genome BiologyUniversity of CaliforniaRiversideUSA

Personalised recommendations