Advertisement

Plant and Soil

, Volume 412, Issue 1–2, pp 267–281 | Cite as

A comparison of antimony accumulation and tolerance among Achillea wilhelmsii, Silene vulgaris and Thlaspi arvense

  • Naser Jamali Hajiani
  • Seyed Majid GhaderianEmail author
  • Naser Karimi
  • Henk Schat
Regular Article

Abstract

Aims

The uptake and tolerance of antimonite [Sb(III)] and antimonate [Sb(V)] were investigated in two populations of Achillea wilhelmsii, one from strongly Sb-enriched mine soil, the other from uncontaminated soil, in comparison with non-metallicolous Silene vulgaris and Thlaspi arvense.

Methods

Tolerance was assessed from root elongation and biomass accumulation after exposure to a series of concentrations of Sb(III) or Sb(V) in hydroponics.

Results

For all the species Sb(III) was more toxic than Sb(V). S. vulgaris was the most Sb(III)-tolerant species, and A. wilhelmsii the most Sb(V)-tolerant one. There were no considerable interspecific differences regarding the root and shoot Sb concentrations. Sb(III) and Sb(V) tolerance and accumulation were not different between the metallicolous and the non-metallicolous A. wilhelmsii populations. Sb(III) uptake was partly inhibited by silicon. Sb(V) uptake was strongly inhibited by chloride.

Conclusions

There is uncorrelated variation among species in Sb(V) and Sb(III) tolerance, showing that plants sequester Sb(V) and Sb(III) in different ways. Sb(V) seems to be taken up via monovalent anion channels, and Sb(III) via silicon transporters, at least in part. The relatively high Sb(V) tolerance in A. wilhelmsii seems to be a species-wide property, rather than a product of local adaptation to Sb-enriched soil.

Keywords

Antimony Accumulation Tolerance Achillea wilhelmsii Silene vulgaris Thlaspi arvense 

Notes

Acknowledgment

We would like to thank the Graduate School of University of Isfahan for providing research facilities for this study. We also thank from Plant Stress Center of Excellence (University of Isfahan) for its support of this study.

References

  1. Ainsworth N, Cooke JA, Johnson MS (1990) Distribution of antimony in contaminated grassland: 1- vegetation and soils. Environ Pollut 65:65–77CrossRefPubMedGoogle Scholar
  2. Antonovics J, Bradshaw AD, Turner RG (1971) Heavy metal tolerance in plants. Adv Ecol Res 7:1–85CrossRefGoogle Scholar
  3. Baroni F, Boscagli A, Protano G, Riccobono F (2000) Antimony accumulation in Achillea ageratum, Plantago lanceolata and Silene vulgaris growing in an old Sb-mining area. Environ Pollut 109:347–352CrossRefPubMedGoogle Scholar
  4. Bell PF, McLaughlin MJ, Cozens G, Stevens DP, Owens G, South H (2003) Plant uptake of 14C-EDTA, 14C-citrate, and 14C-histidine from chelator-buffered and conventional hydroponic solutions. Plant Soil 253:311–319CrossRefGoogle Scholar
  5. Bleeker PM, Hakvoort HWJ, Bliek M, Souer E, Schat H (2006) Enhanced arsenate reduction by a CDC25-like tyrosine phosphatase explains increased phytochelatin accumulation in arsenate-tolerant Holcus lanatus. Plant J 45:917–929CrossRefPubMedGoogle Scholar
  6. Chao DY, Chen Y, Chen J, Shi S, Chen Z, Wang C, Danku J, Zhao FJ, Salt DE (2014) Genome-wide association mapping identifies a new arsenate reductase enzyme critical for limiting arsenic accumulation in plants. PLoS Biol 12(e):1002009. doi: 10.1371/journal.pbio.1002009 CrossRefGoogle Scholar
  7. Corrales I, Barcelo J, Bech J, Poschenrieder C (2014) Antimony accumulation and toxicity tolerance mechanisms in Trifolium species. J Geochem Explor 147:167–172CrossRefGoogle Scholar
  8. De Knecht JA, Van Dillen M, Koevoets PLM, Schat H, Verkleij JAC, Ernst WHO (1994) Phytochelatins in cadmium-sensitive and cadmium-tolerant Silene vulgaris: chain length distribution and sulfide incorporation. Plant Physiol 104:255–261CrossRefPubMedPubMedCentralGoogle Scholar
  9. Eikmann T, Kloke A (1993) Nutzungs- und schutzgutbezogene Orientierungswerte fur (Schad-) stoffe in Boden. In: Rosenkranz D, Bachmann G, Einsele G, Harress HM (eds) Bodenschutz. Ergänzbares Handbuch der Maßnahmen und Empfehlungen für Schutz, Pflege und Sanierung von Böden, Landschaft und Grundwasser-1, Band, 14 Lfg X/93. Erich Schmidt, Berlin, GermanyGoogle Scholar
  10. EU (1998) Council Directive 98/83/EC of 3 November 1998, Quality of Water Intended for Human consumption. Official J L 330, 05/12/1998, p 32–54Google Scholar
  11. Filella M, Belzile N, Chen YW (2002a) Antimony in the environment: a review focused on natural waters: I. Occurrence. Earth Sci Rev 57:125–176CrossRefGoogle Scholar
  12. Filella M, Belzile N, Chen YW (2002b) Antimony in the environment: a review focused on natural waters II. Relevant solution chemistry. Earth Sci Rev 59:265–285CrossRefGoogle Scholar
  13. Gal J, Hursthouse AS, Cuthbert SJ (2006) Chemical availability of arsenic and antimony in industrial soils. Environ Chem Lett 3:149–153CrossRefGoogle Scholar
  14. Gebel T (1997) Arsenic and antimony: comparative approach on mechanistic toxicology. Chem Biol Interact 107:131–144CrossRefPubMedGoogle Scholar
  15. Jamali Hajiani N, Ghaderian SM, Karimi N, Schat H (2015) A comparative study of antimony accumulation in plants growing in two mining areas in Iran, Moghanlo, and Patyar. Environ Sci Pollut Res 22:16542–16553CrossRefGoogle Scholar
  16. Kabata-Pendias A, Mukherjee AB (2007) Trace elements from soil to human. Springer–Verlag, BerlinCrossRefGoogle Scholar
  17. Le Faucheur S, Schildknecht F, Behra R, Sigg L (2006) Thiols in Scenedesmus vacuolatus upon exposure to metals and metalloids. Aquat Toxicol 80:355–361CrossRefPubMedGoogle Scholar
  18. Ma JF, Yamaji N, Mitani N, Xu XY, Su YH, McGrath SP, Zhao FJ (2008) Transporters of arsenite in rice and their role in arsenic accumulation in rice grain. PNAS 105:9931–9935CrossRefPubMedPubMedCentralGoogle Scholar
  19. Meharg AA, Macnair MR (1994) Relationship between plant phosphorus status and the kinetics of As (V) influx in clones of Deschampsia cespitosa (L.) Beauv that differ in their tolerance to As(V). Plant Soil 162:99–106CrossRefGoogle Scholar
  20. Pratas J, Prasad MNV, Freitas H, Conde L (2005) Plants growing in abandoned mines of Portugal are useful for biogeochemical exploration of arsenic, antimony, tungsten and mine reclamation. J Geochem Explor 85:99–107CrossRefGoogle Scholar
  21. Rechinger KH (1986) Compositae VI-Anthemideae. Akademische Druck-U. Verlagsanstalt, Graz-Austria. Rora lranica 158:53Google Scholar
  22. Reid R, Hayes J (2003) International Review of Cytology - A Survey of Cell Biology, Vol 229. Academic Press Inc, San Diego, pp 73–114CrossRefGoogle Scholar
  23. Ren JH, Ma LQ, Sun HJ, Cai F, Luo J (2014) Antimony uptake, translocation and speciation in rice plants exposed to antimonite and antimonate. Sci Total Environ 475:83–89CrossRefPubMedGoogle Scholar
  24. Schat H, Ten Bookum WM (1992) Genetic control of copper tolerance in Silene vulgaris. Heredity 68:219–229CrossRefGoogle Scholar
  25. Schat H, Vooijs R, Kuiper E (1996) Identical major gene loci for heavy metal tolerances that have independently evolved in different local populations and subspecies of Silene vulgaris. Evolution 50:1888–1895CrossRefGoogle Scholar
  26. Schat H, Llugany M, Vooijs R, Hartley-Whithaker J, Bleeker M (2002) The role of phytochelatins in constitutive and adaptative heavy metal tolerances in hyperaccumulator and non-hyperaccumulator metallophytes. J Exp Bot 53:2381–2392CrossRefPubMedGoogle Scholar
  27. Smichowski P (2007) Antimony in the environment as a global pollutant: a review on analytical methodologies for its determination in atmospheric aerosols. Talanta 75:2–14CrossRefPubMedGoogle Scholar
  28. Sneller FEC, Van Heerwaarden LM, Koevoets PLM, Vooijs R, Schat H, Verkleij JAC (1999) Toxicity of arsenate in Silene vulgaris, accumulation and degradation of arsenate-induced phytochelatins. New Phytol 144:223–232CrossRefGoogle Scholar
  29. Sokal RR, Rohlf FJ (1981) Biometry, 2nd edn. Freeman, San FranciscoGoogle Scholar
  30. Song WY, Park J, Mendoza-Cozatl DG, Suter-Grotemeyer M, Geisler M, Weder B, Rea PA, Rentsch D, Schroeder JL, Lee Y, Martinoia E (2010) Arsenic tolerance in Arabidopsis is mediated by two ABCC-type phytochelatin transporters. Proc Natl Acad Sci U S A 107:21187–21192CrossRefPubMedPubMedCentralGoogle Scholar
  31. Tighe M, Ashley P, Lockwood P, Wilson S (2005a) Soil, water, and pasture enrichment of antimony and arsenic within a coastal floodplain system. Sci Total Environ 347:175–186CrossRefPubMedGoogle Scholar
  32. Tighe M, Lockwood P, Wilson S (2005b) Adsorption of antimony (V) by floodplain soils, amorphous iron (III) hydroxide and humic acid. J Environ Monit 7:1177–1185CrossRefPubMedGoogle Scholar
  33. Tisarum R, Lessl J, Dong X, De Oliveira LM, Rathinasabapathi B, Ma LQ (2014) Antimony uptake, efflux and speciation in arsenic hyperaccumulator Pteris vittata. Environ Pollut 186:110–114CrossRefPubMedGoogle Scholar
  34. Tschan M, Robinson BH, Schulin R (2009) Antimony in the soil-plant system—a review. Environ Chem 6:106–115CrossRefGoogle Scholar
  35. USEPA (1979) Water related fate of the 129 priority pollutants, vol. 1. USEPA, Washington DC, USA EP-440/4-79-029AGoogle Scholar
  36. Wenger K, Tandy S, Nowack B (2005) Effect of chelating agents on trace metal speciation and bioavailability. In: Vanbriesen J, Nowack B (eds) Biogeochemistry of chelating agents. American Chemical Society, p 204–224Google Scholar
  37. WHO (2003) Antimony in drinking-water: Background document for preparation of WHO guidelines for drinking-water quality. WHO/SDE/WSH/03.04/74. World Health Organization, GenevaGoogle Scholar
  38. WHO (2006) Guidelines for drinking-water quality, third edition, incorporating first addendum. Volume 1—Recommendations. WHO, GenevaGoogle Scholar
  39. Wilson NJ, Craw D, Hunter K (2004) Antimony distribution and environmental mobility at an historic antimony smelter site, New Zealand. Environ Pollut 129:257–266CrossRefPubMedGoogle Scholar
  40. Winship KA (1987) Toxicity of antimony and its compounds. Adverse Drug React Acute Poisoning Rev 6:67–90PubMedGoogle Scholar
  41. Wysocki R, Clemens S, Augustyniak D, Golik P, Maciaszyk E, Tamas MJ, Dziadkowiec D (2003) Metalloid tolerance based on phytochelatins is not functionally equivalent to the arsenite transporter Acr3p. Biochem Biophys Res Commun 304:293–300CrossRefPubMedGoogle Scholar
  42. Xu XY, McGrath SP, Zhao FJ (2007) Rapid reduction of arsenate in the medium mediated by plant roots. New Phytol 176:590–599CrossRefPubMedGoogle Scholar
  43. Zhao FJ, Ago Y, Mitani N, Li RY, Su YH, Yamaji N, McGrath SP, Ma JF (2010) The role of the rice aquaporin Lsi1 in arsenite efflux from roots. New Phytol 186:392–399CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Naser Jamali Hajiani
    • 1
    • 3
  • Seyed Majid Ghaderian
    • 1
    Email author
  • Naser Karimi
    • 2
  • Henk Schat
    • 3
  1. 1.Department of Biology, Faculty of SciencesUniversity of IsfahanIsfahanIran
  2. 2.Department of Biology, Faculty of SciencesRazi UniversityKermanshahIran
  3. 3.Department of Genetics, Faculty of Earth and Life SciencesVrije UniversiteitAmsterdamThe Netherlands

Personalised recommendations