Advertisement

Plant and Soil

, Volume 412, Issue 1–2, pp 235–251 | Cite as

Improving N management through intercropping alleviates the inhibitory effect of mineral N on nodulation in pea

  • Falong Hu
  • Cai Zhao
  • Fuxue Feng
  • Qiang ChaiEmail author
  • Yanping Mu
  • Yan Zhang
Regular Article

Abstract

Background and aims

Symbiotic N2 fixation is essential in the development of sustainable agriculture, but the nodulation of legumes is usually inhibited by N fertilization. Here, the intercropping of maize and pea in strips under various N managements was used as a means to alleviate the inhibitory effect of mineral N on pea nodulation and N2 fixation and to improve system performance.

Methods

N natural abundance (δ 15N) analysis was employed to quantify N2 fixation in the 3 years (2012 to 2014) of field experiment in Hexi Corridor of Northwestern China. Four N management systems with N rate of 0 kg N ha−1 (the control), 90 + 45 kg N ha−1 (base N plus topdressing N), 90 + 90 kg N ha−1, and 90 + 135 kg N ha−1 were implemented in the maize/pea strip intercropping to form different ratios of base N to topdressing N.

Results

Intercropped pea improved nodule biomass per plant by 99 %, increased nitrogen derived from the atmosphere (Ndfa) by 35 %, and promoted aboveground plant tissue N accumulation by 35 % as compared with sole pea, averaged across the four N treatments. Compared to the highest N fertilizer treatment, a reduction of topdressing to 45 kg N ha−1 increased the nodule biomass of intercropped pea by 116 %, Ndfa by 35 %, and grain yield by 6 %.

Conclusions

Adaptation of suitable N management in cereal/legume intercropping systems will allow an effective conversion of atmospheric N2 into crop available N and thus maximizing the system productivity.

Keywords

Intercropping Nodulation N2 fixation Soil mineral N Inhibitory effect 

Notes

Acknowledgments

We are grateful to the research grants provided by National Key Technology R&D Program (granted number 2012BAD14B10), the National Natural Science Fund (granted number 31160265), the Special Fund for Agro-scientific Research in the Public Interest (granted number 201103001), and the Excellent Youth Foundation of Gansu Scientific Committee (1111RJDA006).

References

  1. Abi-ghanem R, Carpenter-boggs L, Smith JL (2011) Cultivar effects on nitrogen fixation in peas and lentils. Biol Fertil Soils 47:115–120. doi: 10.1007/s00374-010-0492-6 CrossRefGoogle Scholar
  2. Agegnehu G, Ghizaw A, Sinebo W (2006) Yield performance and land-use efficiency of barley and faba bean mixed cropping in Ethiopian highlands. Euro J Agron 25:202–207. doi: 10.1016/j.eja.2006.05.002 CrossRefGoogle Scholar
  3. Andersen M, Hauggaard-Nielsen H, Ambus P, Jensen E (2004) Biomass production, symbiotic nitrogen fixation and inorganic N use in dual and tri-component annual intercrops. Plant Soil 266:273–287. doi: 10.1007/s11104-005-0997-1 CrossRefGoogle Scholar
  4. Arrese-Igor C, Minchin FR, Gordon AJ, Nath AK (1997) Possible causes of the physiological decline in soybean nitrogen fixation in the presence of nitrate. J Exp Bot 48:905–913CrossRefGoogle Scholar
  5. Bedoussac L, Justes E (2009) The efficiency of a durum wheat-winter pea intercrop to improve yield and wheat grain protein concentration depends on N availability during early growth. Plant Soil 330:19–35. doi: 10.1007/s11104-009-0082-2 CrossRefGoogle Scholar
  6. Boucher DH, Espinosa MJ (1982) Cropping system and growth and nodulation responses of beans to nitrogen in Tabasco, Mexico Phaseolus vulgaris. Trop Agric 59:279–282Google Scholar
  7. Chai Q, Qin AZ, Gan YT, Yu AZ (2013) Higher yield and lower carbon emission by intercropping maize with rape, pea, and wheat in arid irrigation areas. Agron Sustain Dev 34:535–543. doi: 10.1007/s13593-013-0161-x CrossRefGoogle Scholar
  8. Corre-Hellou G, Fustec J, Crozat Y (2006) Interspecific competition for soil N and its interaction with N2 fixation, leaf expansion and crop growth in pea–barley intercrops. Plant Soil 282:195–208. doi: 10.1007/s11104-005-5777-4 CrossRefGoogle Scholar
  9. Da Silva PM, Tsai SM, Bonetti R (1993) Response to inoculation and N fertilization for increased yield and biological nitrogen fixation of common bean (Phaseolus vulgaris L.). Plant Soil 152:123–130. doi: 10.1007/BF00016341 CrossRefGoogle Scholar
  10. Drakopoulos D, Scholberg JMS, Lantinga EA, Tittonell PA (2015) Influence of reduced tillage and fertilization regime on crop performance and nitrogen utilization of organic potato. Org Agric. doi: 10.1007/s13165-015-0110-x Google Scholar
  11. Fan F, Zhang F, Song Y, Sun J, Bao X, Guo T, Li L (2006) Nitrogen fixation of faba bean (Vicia faba L.) interacting with a non-legume in two contrasting intercropping systems. Plant Soil 283:275–286. doi: 10.1007/s11104-006-0019-y CrossRefGoogle Scholar
  12. FAO/UNESCO (1988) Soil map of the world: revised legend/prepared by the Food and Agriculture Organization of the United Nations. UnescoGoogle Scholar
  13. Furseth BJ, Conley SP, Ané J-M (2012) Soybean response to soil rhizobia and seed-applied rhizobia inoculants in Wisconsin. Crop Sci 52:339–344. doi: 10.2135/cropsci2009.04.0185 CrossRefGoogle Scholar
  14. Gan YT, Siddique KHM, Turner NC, Li XG, Niu JY, Yang C, Liu LP, Chai Q (2013) Chapter seven—Ridge-furrow mulching systems-an innovative technique for boosting crop productivity in semiarid rain-fed environments. In: Sparke, D (ed) Adv Agron Academic PressGoogle Scholar
  15. Gan Y, Liang C, Chai Q, Lemke RL, Campbell CA, Zentner RP (2014) Improving farming practices reduces the carbon footprint of spring wheat production. Nat commun 5:5012. doi: 10.1038/ncomms6012 CrossRefPubMedPubMedCentralGoogle Scholar
  16. Garg N, Geetanjali (2007) Symbiotic nitrogen fixation in legume nodules: process and signaling. A review. Agron Sustain Dev 27:59–68. doi: 10.1051/agro:2006030 CrossRefGoogle Scholar
  17. Giambalvo D, Ruisi P, Saia S, Di Miceli G, Frenda AS, Amato G (2012) Faba bean grain yield, N2 fixation, and weed infestation in a long-term tillage experiment under rainfed Mediterranean conditions. Plant Soil 360:215–227. doi: 10.1007/s11104-012-1224-5 CrossRefGoogle Scholar
  18. Hardarson G, Zapata F, Danso SKA (1984) Effect of plant genotype and nitrogen fertilizer on symbiotic nitrogen fixation by soybean cultivars. Plant Soil 82:397–405. doi: 10.1007/BF02184277 CrossRefGoogle Scholar
  19. Hauggaard-Nielsen H, Ambus P, Jensen ES (2003) The comparison of nitrogen use and leaching in sole cropped versus intercropped pea and barley. Nutr Cycl Agroecosyst 65:289–300CrossRefGoogle Scholar
  20. Hungria M, Nogueira MA, Araujo RS (2013) Co-inoculation of soybeans and common beans with rhizobia and azospirilla: strategies to improve sustainability. Biol Fertil Soils 49:791–801. doi: 10.1007/s00374-012-0771-5 CrossRefGoogle Scholar
  21. Jamont M, Piva G, Fustec J (2013) Sharing N resources in the early growth of rapeseed intercropped with faba bean: does N transfer matter? Plant Soil 371:641–653. doi: 10.1007/s11104-013-1712-2 CrossRefGoogle Scholar
  22. Jensen E (1996) Grain yield, symbiotic N2 fixation and interspecific competition for inorganic N in pea-barley intercrops. Plant Soil 182:25–38. doi: 10.1007/BF00010992 CrossRefGoogle Scholar
  23. Jeuffroy MH, Ney B, Ourry A (2002) Integrated physiological and agronomic modelling of N capture and use within the plant. J Exp Bot 53:809–823. doi: 10.1093/jexbot/53.370.809 CrossRefPubMedGoogle Scholar
  24. Karpenstein-Machan M, Stuelpnagel R (2000) Biomass yield and nitrogen fixation of legumes monocropped and intercropped with rye and rotation effects on a subsequent maize crop. Plant Soil 218:215–232CrossRefGoogle Scholar
  25. Ledgard SF, Sprosen MS, Penno JW, Rajendram GS (2001) Nitrogen fixation by white clover in pastures grazed by dairy cows: temporal variation and effects of nitrogen fertilization. Plant Soil 229:177–187CrossRefGoogle Scholar
  26. Li YY, Yu CB, Cheng X, Li CJ, Sun JH, Zhang FS, Lambers H, Li L (2009) Intercropping alleviates the inhibitory effect of N fertilization on nodulation and symbiotic N2 fixation of faba bean. Plant Soil 323:295–308. doi: 10.1007/s11104-009-9938-8 CrossRefGoogle Scholar
  27. Neumann A, Schmidtke K, Rauber R (2007) Effects of crop density and tillage system on grain yield and N uptake from soil and atmosphere of sole and intercropped pea and oat. Field Crop Res 100:285–293. doi: 10.1016/j.fcr.2006.08.001 CrossRefGoogle Scholar
  28. Peoples MB, Boddey RM, Herridge DF (2002) Chapter 13—quantification of nitrogen fixation. In: Leigh GJ (ed) Nitrogen fixation at the millennium. Elsevier Science, AmsterdamGoogle Scholar
  29. Rusinamhodzi L, Murwira HK, Nyamangara J (2006) Cotton–cowpea intercropping and its N2 fixation capacity improves yield of a subsequent maize crop under Zimbabwean rain-fed conditions. Plant Soil 287:327–336. doi: 10.1007/s11104-006-9080-9 CrossRefGoogle Scholar
  30. Salvagiotti F, Cassman KG, Specht JE, Walters DT, Weiss A, Dobermann A (2008) Nitrogen uptake, fixation and response to fertilizer N in soybeans: a review. Field Crops Res 108:1–13. doi: 10.1016/j.fcr.2008.03.001 CrossRefGoogle Scholar
  31. Sanginga N, Mulongoy K, Ayanaba A (1988) Nodulation and growth of Leucaena leucocephala (Lam.) de Wit as affected by inoculation and N fertilizer. Plant Soil 112:129–135. doi: 10.1007/bf02181762 CrossRefGoogle Scholar
  32. Shearer G, Kohl DH (1986) N2-fixation in field settings: estimations based on natural 15N abundance. Aust J Plant Physiol 13:699–756Google Scholar
  33. Veluci RM, Neher DA, Weicht TR (2006) Nitrogen fixation and leaching of biological soil crust communities in mesic temperate soils. Microb Ecol 51:189–196. doi: 10.1007/s00248-005-0121-3 CrossRefPubMedGoogle Scholar
  34. Yu CB, Li YY, Li CJ, Sun JH, He XH, Zhang FS, Li L (2009) An improved nitrogen difference method for estimating biological nitrogen fixation in legume-based intercropping systems. Biol Fertil Soils 46:227–235. doi: 10.1007/s00374-009-0418-3 CrossRefGoogle Scholar
  35. Zhang F, Cui Z, Fan M, Zhang W, Chen X, Jiang R (2011) Integrated soil-crop system management: reducing environmental risk while increasing crop productivity and improving nutrient use efficiency in China. J Environ Qual 40:1051–1057. doi: 10.2134/jeq2010.0292 CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Falong Hu
    • 1
    • 2
  • Cai Zhao
    • 1
    • 2
  • Fuxue Feng
    • 1
    • 3
  • Qiang Chai
    • 1
    • 2
    Email author
  • Yanping Mu
    • 1
    • 2
  • Yan Zhang
    • 1
    • 2
  1. 1.Gansu Provincial Key Laboratory of Arid Land Crop ScienceLanzhouChina
  2. 2.College of AgronomyGansu Agricultural UniversityLanzhouChina
  3. 3.College of EngineeringGansu Agricultural UniversityLanzhouChina

Personalised recommendations