Advertisement

Plant and Soil

, Volume 412, Issue 1–2, pp 151–162 | Cite as

Three symbionts involved in interspecific plant-soil feedback: epichloid endophytes and mycorrhizal fungi affect the performance of rhizobia-legume symbiosis

  • P. A. García-ParisiEmail author
  • F. A. Lattanzi
  • A. A. Grimoldi
  • M. Druille
  • M. Omacini
Regular Article

Abstract

Aims

Plants interact by modifying soil conditions in plant-soil feedback processes. Foliar endophytes of grasses exert multiple effects on host rhizosphere with potential consequences on plant-soil feedback. Here, we hypothesize that the grass-endophyte symbiosis impairs soil symbiotic potential, and in turn influences legume performance and nitrogen acquisition.

Methods

Soil was conditioned in pots, growing Lolium multiflorum with or without the fungal endophyte Epichloë and with or without arbuscular mycorrhizal fungi (AMF). Then, Trifolium repens grew in all types of conditioned soils with high or low rhizobia availability.

Results

Endophyte soil conditioning reduced AMF spores number and rhizobial nodules (−27 % and −38 %, respectively). Seedling survival was lower in endophyte-conditioned soil and higher in mycorrhizal soils (−27 % and +24 %, respectively). High rhizobia-availability allowed greater growth and nitrogen acquisition, independent of soil conditioning. Low rhizobia-availability allowed both effects only in endophyte-conditioned soil.

Conclusion

Endophyte-induced changes in soil (i) hindered symbiotic potential by reducing AMF spore availability or rhizobia nodulation, (ii) impaired legume survival irrespective of belowground symbionts presence, but (iii) mimicked rhizobia effects, enhancing growth and nitrogen fixation in poorly nodulated plants. Our results show that shoot and root symbionts can be interactively involved in interspecific plant-soil feedback.

Keywords

Aboveground-belowground interactions Arbuscular mycorrhizal fungi N-fixation Epichloë Soil conditioning Symbiosis 

Notes

Acknowledgments

We are grateful to Laura Ventura, Rudi Schäufele, Mirta M. Rabadán, for their technical assistance. Rizobacter Argentina S.A. (Pergamino, Argentina) generously donated rhizobial inoculants. We are grateful to Dr. Milena M. Manzur, the editor and three anonymous reviewers whose constructive comments on earlier versions improved the manuscript. P. G. P and M. D. are supported by postdoctoral fellowships from the National Council of Scientific and Technical Research (CONICET - Argentina). The study was supported by University of Buenos Aires, grants from ANPCyT (PICT 1525) and an international project cooperation from MINCyT (AL-1205, Argentina) - BMBF (01DN13006, Germany).

References

  1. Antunes PM, Miller J, Carvalho LM, Klironomos JN, Newman JA (2008) Even after death the endophytic fungus of Schenodorus phoenix reduces the arbuscular mycorrhiza of other plants. Funct Ecol 22:912–918CrossRefGoogle Scholar
  2. Appleby CA (1984) Leghemoglobin and rhizobium respiration. Annu Rev Plant Physiol 35:443–478CrossRefGoogle Scholar
  3. Bååth E, Hayman DS (1984) Effect of soil volume and plant density on mycorrhizal infection and growth response. Plant Soil 77(2–3):373–376Google Scholar
  4. Bacon CW, White JFJ (1994) Biotechnology of endophytic fungi of grasses. CRC Press, Boca RatonGoogle Scholar
  5. Bates D, Maechler M, Bolker B, Walker S (2015) Fitting linear mixed-effects models using lme4. J Stat Softw 67:1–48. doi: 10.18637/jss.v067.i01 CrossRefGoogle Scholar
  6. Baxendale C, Orwin KH, Poly F, Pommier T, Bardgett RD (2014) Are plant-soil feedback responses explained by plant traits? New Phytol 204:408–423CrossRefPubMedGoogle Scholar
  7. Bever JD, Westover KM, Antonovics J (1997) Incorporating the soil community into plant population dynamics: the utility of the feedback approach. J Ecol 85:561–573CrossRefGoogle Scholar
  8. Bever JD, Broadhurst LM, Thrall PH (2013) Microbial phylotype composition and diversity predicts plant productivity and plant–soil feedbacks. Ecol Lett 16:167–174CrossRefPubMedGoogle Scholar
  9. Bowatte S, Barrett B, Luscombe C, Hume DE, Luo D, Theobald P, Newton PC (2011) Effect of grass species and fungal endophyte on soil nitrification potential. N Z J Agric Res 54:275–284CrossRefGoogle Scholar
  10. Breen JP (1994) Acremonium endophyte interactions with enhanced plant resistance to insects. Annu Rev Entomol 39:401–423CrossRefGoogle Scholar
  11. Buyer JS, Zuberer DA, Nichols KA, Franzluebbers AJ (2011) Soil microbial community function, structure, and glomalin in response to tall fescue endophyte infection. Plant Soil 339(1–2):401–412Google Scholar
  12. Casas C, Omacini M, Montecchia MS, Correa OS (2011) Soil microbial community responses to the fungal endophyte Neotyphodium in Italian ryegrass. Plant Soil 340:347–355CrossRefGoogle Scholar
  13. Casas C, Torreta JP, Exeler N, Omacini M (2016) What happens next? Legacy effects induced by grazing and grass-endophyte symbiosis on thistle plants and their floral visitors. Plant Soil 405:211–229CrossRefGoogle Scholar
  14. Chu-Chou M, Guo B, An Z-Q, Hendrix JW, Ferriss RS, Siegel MR, Dougherty CT, Burrus PB (1992) Suppression of mycorrhizal fungi in fescue by the Acremonium coenophialum endophyte. Soil Biol Biochem 24:633–637CrossRefGoogle Scholar
  15. Clay K, Holah J (1999) Fungal endophyte symbiosis and plant diversity in successional fields. Science 285:1742–1744CrossRefPubMedGoogle Scholar
  16. Cripps MG, Edwards GR, McKenzie SL (2013) Grass species and their fungal symbionts affect subsequent forage growth. Basic Appl Ecol 14:225–234CrossRefGoogle Scholar
  17. Eerens JPJ, Lucas RJ, Easton HS, White JGH (1998) Influence of the ryegrass endophyte Neotyphodium lolii. in a cool-moist environment III Interaction with white clover. N Z J Agric Res 41:201–207CrossRefGoogle Scholar
  18. Franzluebbers AJ (2006) Short-term responses of soil C and N fractions to tall fescue endophyte infection. Plant Soil 282:153–164CrossRefGoogle Scholar
  19. García Parisi PA, Grimoldi AA, Omacini M (2014) Endophytic fungi of grasses protect other plants from aphid herbivory. Fungal Ecol 9:61–64CrossRefGoogle Scholar
  20. García Parisi PA, Lattanzi FA, Grimoldi AA, Omacini M (2015) Multi-symbiotic systems: functional implications of the coexistence of grass–endophyte and legume–rhizobia symbioses. Oikos 124:553–560CrossRefGoogle Scholar
  21. Gerdemann JW, Nicolson TH (1963) Spores of mycorrhizal Endogone species extracted from soil by wet sieving and decanting. Trans Br Mycol Soc 46:235–244CrossRefGoogle Scholar
  22. Grace JB, Tilman D (1990) Perspectives on plant competition. Academic Press, San DiegoGoogle Scholar
  23. Grigulis K, Lavorel S, Krainer U, Legay N, Baxendale C, Dumont M, Kastl E, Arnoldi C, Bardgett RD, Poly F, Pommier T, Schloter M, Tappeiner U, Bahn M, Clément J-C (2013) Relative contributions of plant traits and soil microbial properties to mountain grassland ecosystem services. J Ecol 101:47–57CrossRefGoogle Scholar
  24. Grimoldi AA, Kavanová M, Lattanzi FA, Schnyder H (2005) Phosphorus nutrition-mediated effects of arbuscular mycorrhiza on leaf morphology and carbon allocation in perennial ryegrass. New Phytol 168:435–444CrossRefPubMedGoogle Scholar
  25. Hodge A, Fitter AH (2013) Microbial mediation of plant competition and community structure. Funct Ecol 27:865–875CrossRefGoogle Scholar
  26. Högberg P (1997) Tansley review no. 95. 15 N natural abundance in soil-plant systems. New Phytol 137:179–203CrossRefGoogle Scholar
  27. Jenkins MB, Franzluebbers AJ, Humayoun SB (2006) Assessing short-term responses of prokaryotic communities in bulk and rhizosphere soils to tall fescue endophyte infection. Plant Soil 289:309–320CrossRefGoogle Scholar
  28. Ke PJ, Miki T, Ding TS (2015) The soil microbial community predicts the importance of plant traits in plant-soil feedback. New Phytol 206:329–341CrossRefPubMedGoogle Scholar
  29. Klironomos JN (2002) Feedback with soil biota contributes to plant rarity and invasiveness in communities. Nature 417:67–70CrossRefPubMedGoogle Scholar
  30. Kong CH, Xu X, Zhou B, Hu F, Zhang C, Zhang M (2004) Two compounds from allelopathic rice accession and their inhibitory activity on weeds and fungal pathogens. Phytochemistry 65:1123–1128CrossRefPubMedGoogle Scholar
  31. Larimer AL, Bever JD, Clay K (2010) The interactive effects of plant microbial symbionts: a review and meta-analysis. Symbiosis 51:139–148CrossRefGoogle Scholar
  32. Larimer AL, Bever JD, Clay K (2012) Consequences of simultaneous interactions of fungal endophytes and arbuscular mycorrhizal fungi with a shared host grass. Oikos 121:2090–2096CrossRefGoogle Scholar
  33. Larimer AL, Clay K, Bever JD (2014) Synergism and context dependency of interactions between arbuscular mycorrhizal fungi and rhizobia with a prairie legume. Ecology 95:1045–1054CrossRefPubMedGoogle Scholar
  34. Legay N, Baxendale C, Grigulis K, Krainer U, Kastl E, Schloter M, Bardgett RD, Arnoldi C, Bahn M, Dumont M, Poly F, Pommier T, Clément JC, Lavorel S (2014) Contribution of above- and below-ground plant traits to the structure and function of grassland soil microbial communities. Ann Bot 114:1011–1021CrossRefPubMedPubMedCentralGoogle Scholar
  35. Leuchtmann A, Bacon CW, Schardl CL, White JF, Tadych M (2014) Nomenclatural realignment of Neotyphodium species with genus Epichloe. Mycologia 106:202–215PubMedGoogle Scholar
  36. Levizou E, Karageorgou P, Petropoulou Y, Grammatikopoulos G, Manetas Y (2004) Induction of ageotropic response in lettuce radical growth by epicuticular flavonoid aglycones of Dittrichia viscosa. Biol Plant 48:305–307CrossRefGoogle Scholar
  37. Mack KML, Rudgers JA (2008) Balancing multiple mutualists: asymmetric interactions among plants, arbuscular mycorrhizal fungi, and fungal endophytes. Oikos 117:310–320CrossRefGoogle Scholar
  38. Matthews JW, Clay K (2001) Influence of fungal endophyte infection on plant-soil feedback and community interactions. Ecology 82:500–509Google Scholar
  39. Novas MV, Iannone LJ, Godeas AM, Scervino JM (2011) Evidence for leaf endophyte regulation of root symbionts: effect of Neotyphodium endophytes on the pre-infective state of mycorrhizal fungi. Symbiosis 55:19–28CrossRefGoogle Scholar
  40. Omacini M (2013) Asexual endophytes of grasses: invisible symbionts, visible imprints in the host neigbourhood. In: Verma VC, Gange AC (eds) Advances in endophytic research. Springer, India, pp. 143–157Google Scholar
  41. Omacini M, Eggers T, Bonkowski M, Gange AC, Jones TH (2006) Leaf endophytes affect mycorrhizal status and growth of co-infected and neighbouring plants. Funct Ecol 20:226–232CrossRefGoogle Scholar
  42. Omacini M, Semmartin M, Perez LI, Gundel PE (2012) Grass-endophyte symbiosis: a neglected aboveground interaction with multiple belowground consequences. Appl Soil Ecol 61:273–279CrossRefGoogle Scholar
  43. Ott T, van Dongen JT, Gu C, Krusell L, Desbrosses G, Vigeolas H, Bock V, Czechowski T, Geigenberger P, Udvardi MK (2005) Symbiotic leghemoglobins are crucial for nitrogen fixation in legume root nodules but not for general plant growth and development. Curr Biol 15:531–535CrossRefPubMedGoogle Scholar
  44. Pérez LI, Gundel PE, Omacini M (2016) Can defensive mutualism between grasses and fungal endophytes protect non-symbiotic neighbours from soil pathogens? Plant Soil 405:289–298CrossRefGoogle Scholar
  45. Phillips JM, Hayman DS (1970) Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. Trans Br Mycol Soc 55:158–161CrossRefGoogle Scholar
  46. Ponce MA, Bompadre MJ, Scervino JM, Ocampo JA, Chaneton EJ, Godeas AM (2009) Flavonoids, benzoic acids and cinnamic acids isolated from shoots and roots of Italian rye grass (Lolium multiflorum lam.) with and without endophyte association and arbuscular mycorrhizal fungus. Biochem Syst Ecol 37:245–253CrossRefGoogle Scholar
  47. Quigley PE (2000) Effects of Neotyphodium lolii infection and sowing rate of perennial ryegrass (Lolium perenne) on the dynamics of ryegrass/subterranean clover (Trifolium subterraneum) swards. Aust J Agric Res 50:47–56.Google Scholar
  48. R Core Team (2015) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/
  49. Rice EL (1984) Allelopathy. Academy Press, New YorkGoogle Scholar
  50. Rudgers JA, Clay K (2007) Endophyte symbiosis with tall fescue: how strong are the impacts on communities and ecosystems? Fungal Biology Reviews 21:107–124CrossRefGoogle Scholar
  51. Rudgers JA, Orr S (2009) Non-native grass alters growth of native tree species via leaf and soil microbes. J Ecol 97:247–255CrossRefGoogle Scholar
  52. Saikkonen K, Ruokolainen K, Huitu O, Gundel PE, Piltti T, Hamilton CE, Helander M (2013) Fungal endophytes help prevent weed invasions. Agric Ecosyst Environ 165:1–5CrossRefGoogle Scholar
  53. Schulze J (2004) How are nitrogen fixation rates regulated in legumes? J Plant Nutr Soil Sci 167:125–137CrossRefGoogle Scholar
  54. Slaughter LC, Carlisle AE, Nelson JA, McCulley RL (2016) Fungal endophyte symbiosis alters nitrogen source of tall fescue host, but not nitrogen fixation in co-occurring red clover. Plant Soil 405:243–256CrossRefGoogle Scholar
  55. Snell FJJ, Quigley PEE (1993) Allelopathic effects of endophyte in perennial ryegrass residues on young subterranean clover plants. In: Baker AM, Crush JR, Humpries LM (eds) Proceedings of the XVII International Grassland Congress. New Zealand Grassland Association, Palmerston North, pp. 343–344Google Scholar
  56. Springer TL (1996) Allelopathic effects on germination and seedling growth of clover by endophyte-free and -infected tall fescue. Crop Sci 36:1639–1642CrossRefGoogle Scholar
  57. Sutherland BL, Hoglund JH (1989) Effect of ryegrass containing the endophyte (Acremonium lolii) on the performance of associated white clover and subsequent crops. Proc New Zeal Grassl Assoc 50:265–269Google Scholar
  58. Sutherland BL, Hume DE, Tapper BA (1999) Allelopathic effects of endophyte-infected perennial ryegrass extracts on white clover seedlings. N Z J Agric Res 42:19–26CrossRefGoogle Scholar
  59. Van der Heijden MGA, Streitwolf-Engel R, Riedl R, Siegrist S, Neudecker A, Ineichen K, Boller T, Wiemken A, Sanders IR (2006) The mycorrhizal contribution to plant productivity, plant nutrition and soil structure in experimental grassland. New Phytol 172:739–752CrossRefPubMedGoogle Scholar
  60. Van der Heijden MGA, Bardgett RD, Van Straalen NM (2008) The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecol Lett 11:296–310CrossRefPubMedGoogle Scholar
  61. Van der Putten WH, Bardgett RD, Bever JD, Bezemer TM, Casper BB, Fukami T, Kardol P, Klironomos JN, Kulmatiski A, Schweitzer JA, Suding KN, Van de Voorde TFJ, Wardle DA (2013) Plant-soil feedbacks: the past, the present and future challenges. J Ecol 101:265–276CrossRefGoogle Scholar
  62. Vázquez-de-Aldana BR, Romo M, García-Ciudad A, Petisco C, García-Criado B (2011) Infection with the fungal endophyte Epichloë festucae may alter the allelopathic potential of red fescue. Ann Appl Biol 159:281–290CrossRefGoogle Scholar
  63. Vignale MV, Iannone LJ, Pinget AD, De Battista JP, Novas MV (2016) Effect of epichloid endophytes and soil fertilization on arbuscular mycorrhizal colonization of a wild grass. Plant Soil 405:279–287CrossRefGoogle Scholar
  64. Walker C, Mize C, McNabb H Jr (1982) Populations of endogonaceous fungi at two locations in Central Iowa. Can J Bot 60:2518–2529CrossRefGoogle Scholar
  65. Wardle DA, Bardgett RD, Klironomos JN, Setälä H, van der Putten WH, Wall DH (2004) Ecological linkages between aboveground and belowground biota. Science 304:1629–1633CrossRefPubMedGoogle Scholar
  66. Watson RN (1990) Effects of plant nematodes and Acremonium endophyte on white clover establishment with ryegrass or tall fesuce. Proceedings of the Forty Third New Zealand Weed and Pest Control Conference. pp 347–351Google Scholar
  67. Weston LA, Mathesius U (2013) Flavonoids: their structure, biosynthesis and role in the rhizosphere, including allelopathy. J Chem Ecol 39:283–297CrossRefPubMedGoogle Scholar
  68. Wootton JT (1994) The nature and consequences of indirect effects in ecological communities. Annu Rev Ecol Syst 25:443–466CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • P. A. García-Parisi
    • 1
    • 2
    Email author
  • F. A. Lattanzi
    • 3
  • A. A. Grimoldi
    • 1
  • M. Druille
    • 1
  • M. Omacini
    • 4
  1. 1.Cátedra de ForrajiculturaUniversidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Investigaciones Fisiológicas y Ecológicas vinculadas a la Agricultura (IFEVA), Facultad de AgronomíaBuenos AiresArgentina
  2. 2.Centro de Investigaciones y Transferencia del Noroeste de la Provincia de Buenos -CITNOBA, CONICET – UNNOBAPergaminoArgentina
  3. 3.Lehrstuhl für GrünlandlehreTechnische Universität MünchenFreising-WeihenstephanGermany
  4. 4.Cátedra de EcologíaUniversidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Investigaciones Fisiológicas y Ecológicas vinculadas a la Agricultura (IFEVA), Facultad de AgronomíaBuenos AiresArgentina

Personalised recommendations