Skip to main content

Inoculation with Azospirillum brasilense (Ab-V4, Ab-V5) increases Zea mays root carboxylate-exudation rates, dependent on soil phosphorus supply

Abstract

Background and aims

We aimed to investigate the effects of root carboxylate exudation in the interaction between Azospirillum brasilense and Zea mays. We hypothesized that root carboxylate exudation is a mechanism that increases colonization of the maize rhizosphere by A. brasilense and that carboxylate exudation would increase at a low soil phosphorus (P) availability.

Methods

We conducted a greenhouse experiment, using maize seeds inoculated and uninoculated with A. brasiliense. Seeds were planted in pots, supplied with nutrient solution, varying in P concentration. After 45 days we measured total plant biomass, root length and area, plant nutrient status, and the root carboxylate-exudation rate.

Results

Inoculation increased the root length and area, and this effect increased with increasing P supply. Inoculated plants also showed an increased root carboxylate-exudation rate. For inoculated treatments, the exudation rate was positively correlated with root architecture parameters; however, it was negatively correlated with leaf manganese concentration, a proxy for the amount of carboxylates in the rhizosphere.

Conclusion

Inoculation of A. brasilense stimulated root carboxylate exudation, which was positively correlated with root length and area. These positive correlations are probably mediated by the effect of carboxylates on the rhizosphere microbial community. This indicates a positive feedback in which A. brasilense inoculation stimulates root carboxylate exudation, influencing the rhizosphere microbial community. It results in positive effects on maize root architecture. The root length of inoculated plants was positively correlated with P supply, indicating that P supply positively affects the microbial community, modulating the interaction between A. brasilense and Z. mays.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. Abrahão A, Lambers H, Sawaya ACHF, Mazzafera P, Oliveira RS (2014) Convergence of a specialized root trait in plants from nutrient-impoverished soils: phosphorus-acquisition strategy in a nonmycorrhizal cactus. Oecologia 176:345–355. doi:10.1007/s00442-014-3033-4

    Article  PubMed  Google Scholar 

  2. Bais HP, Fall R, Vivanco JM (2004) Biocontrol of Bacillus subtilis against infection of Arabidopsis roots by Pseudomonas syringae is facilitated by biofilm formation and surfactin production. Plant Physiol 134:307–319. doi:10.1104/pp.103.028712

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  3. Bais HP, Weir TL, Perry LG, Gilroy S, Vivanco JM (2006) The role of root exudates in rhizosphere interactions with plants and other organisms. Annu Rev Plant Biol 57:233–266. doi:10.1146/annurev.arplant.57.032905.105159

    CAS  Article  PubMed  Google Scholar 

  4. Barber DA, Lynch JM (1977) Microbial growth in the rhizosphere. Soil Biol Biochem 9:305–308. doi:10.1016/0038-0717(77)90001-3

    CAS  Article  Google Scholar 

  5. Bashan Y, De-Bashan LE (2010) How the plant growth-promoting bacterium Azospirillum promotes plant growth—a critical assessment. Adv Agron 108:77–136. doi:10.1016/S0065-2113(10)08002-8

    CAS  Article  Google Scholar 

  6. Bashan Y, Holguin G (1997) Azospirillum – plant relationships: environmental and physiological advances (1990–1996. Can J Microbiol 43:103–121. doi:10.1139/m97-015

    CAS  Article  Google Scholar 

  7. Bashan Y, Holguin G, de-Bashan LE (2004) Azospirillum - plant relationships: physiological, molecular, agricultural, and environmental advances (1997–2003). Can J Microbiol 50:521–577. doi:10.1139/w04-035

    CAS  Article  PubMed  Google Scholar 

  8. Bertsch PM, Bloom PR (1996) Aluminum. In: DL S, Page AL, Helmke PA, Loeppert RH, Soltanpour PN, Tabatabai MA, Johnston CT, Sumner ME (eds) Methods of soil analysis. Part 3 - chemical methods. Soil Science Society of America Inc., USA, pp. 517–550

    Google Scholar 

  9. Bottini R, Cassán F, Piccoli P (2004) Gibberellin production by bacteria and its involvement in plant growth promotion and yield increase. Appl Microbiol Biotechnol 65:497–503. doi:10.1007/s00253-004-1696-1

    CAS  Article  PubMed  Google Scholar 

  10. Bouma TJ, Nielsen KL, Koutstaal B (2000) Sample preparation and scanning protocol for computerised analysis of root length and diameter. Plant Soil 218:185–196. doi:10.1023/A:1014905104017

    CAS  Article  Google Scholar 

  11. Burdman S, Dulguerova G, Okon Y, Jurkevitch E (2001) Purification of the major outer membrane protein of Azospirillum brasilense, its affinity to plant roots, and its involvement in cell aggregation. Mol Plant-Microbe Interact MPMI 14:555–561. doi:10.1094/MPMI.2001.14.4.555

    CAS  Article  PubMed  Google Scholar 

  12. Chu H, Lin X, Fujii T, Morimoto S, Yagi K, Hu J, Zhang J (2007) Soil microbial biomass, dehydrogenase activity, bacterial community structure in response to long-term fertilizer management. Soil Biol Biochem 39:2971–2976. doi:10.1016/j.soilbio.2007.05.031

    CAS  Article  Google Scholar 

  13. Compant S, Clément C, Sessitsch A (2010) Plant growth-promoting bacteria in the rhizo- and endosphere of plants: their role, colonization, mechanisms involved and prospects for utilization. Soil Biol Biochem 42:669–678. doi:10.1016/j.soilbio.2009.11.024

    CAS  Article  Google Scholar 

  14. Cordell D, Drangert J-O, White S (2009) The story of phosphorus: global food security and food for thought. Glob Environ Chang 19:292–305. doi:10.1016/j.gloenvcha.2008.10.009

    Article  Google Scholar 

  15. de Weert S, Vermeiren H, Mulders IH, Kuiper I, Hendrickx N, Bloemberg GV, Vanderleyden J, De Mot R, Lugtenberg BJ (2002) Flagella-driven chemotaxis towards exudate components is an important trait for tomato root colonization by Pseudomonas fluorescens. Mol Plant-Microbe Interact MPMI 15:1173–1180. doi:10.1094/MPMI.2002.15.11.1173

    Article  PubMed  Google Scholar 

  16. Dobbelaere S, Croonenborghs A, Thys A, Ptacek D, Vanderleyden J, Dutto P, Labandera-Gonzalez C, Caballero-Mellado J, Aguirre JF, Kapulnik Y, Brener S, Burdman S, Kadouri D, Sarig S, Okon Y (2001) Responses of agronomically important crops to inoculation with Azospirillum. Funct Plant Biol 28:871–879. doi:10.1071/PP01074

    Article  Google Scholar 

  17. Fibach-Paldi S, Burdman S, Okon Y (2012) Key physiological properties contributing to rhizosphere adaptation and plant growth promotion abilities of Azospirillum brasilense. FEMS Microbiol Lett 326:99–108. doi:10.1111/j.1574-6968.2011.02407.x

    CAS  Article  PubMed  Google Scholar 

  18. Fontaine S, Mariotti A, Abbadie L (2003) The priming effect of organic matter: a question of microbial competition? Soil Biol Biochem 35:837–843. doi:10.1016/S0038-0717(03)00123-8

    CAS  Article  Google Scholar 

  19. Haichar FZ, Marol C, Berge O, Rangel-Castro JI, Prosser JI, Balesdent J, Heulin T, Achouak W (2008) Plant host habitat and root exudates shape soil bacterial community structure. ISME J 2:1221–1230. doi:10.1038/ismej.2008.80

    CAS  Article  PubMed  Google Scholar 

  20. Johnston AE, Poulton PR, Fixen PE, Curtin D (2014) Phosphorus: its efficient use in agriculture. Adv Agron 123:177–228

    CAS  Article  Google Scholar 

  21. Kapulnik Y, Okon Y, Henis Y (1985) Changes in root morphology of wheat caused by Azospirillum inoculation. Can J Microbiol 31:881–887. doi:10.1139/m85-165

    Article  Google Scholar 

  22. Kaspar TC, Ewing RP (1997) Rootedge: a software for measuring root length from desktop scanner images. Agron J 89:932–940. doi:10.2134/agronj1997.00021962008900060014x

    Article  Google Scholar 

  23. Kraffczyk I, Trolldenier G, Beringer H (1984) Soluble root exudates of maize: influence of potassium supply and rhizosphere microorganisms. Soil Biol Biochem 16:315–322. doi:10.1016/0038-0717(84)90025-7

    CAS  Article  Google Scholar 

  24. Kuzyakov Y, Friedel JK, Stahr K (2000) Review of mechanisms and quantification of priming effects. Soil Biol Biochem 32:1485–1498. doi:10.1016/S0038-0717(00)00084-5

    CAS  Article  Google Scholar 

  25. Lambers H, Mougel C, Jaillard B, Hinsinger P (2009) Plant-microbe-soil interactions in the rhizosphere: an evolutionary perspective. Plant Soil 321:83–115. doi:10.1007/s11104-009-0042-x

    CAS  Article  Google Scholar 

  26. Lambers H, Hayes PE, Laliberté E, Oliveira RS, Turner BL (2015) Leaf manganese accumulation and phosphorus-acquisition efficiency. Trends Plant Sci 20:83–90. doi:10.1016/j.tplants.2014.10.007

    CAS  Article  PubMed  Google Scholar 

  27. Lindsay WL, Norvell WA (1978) Development of a DTPA soil test for zinc, iron, manganese, and copper. Soil Sci Soc Am J 42:421–428. doi:10.2136/sssaj1978.03615995004200030009x

    CAS  Article  Google Scholar 

  28. Lugtenberg B, Kamilova F (2009) Plant-growth-promoting rhizobacteria. Annu Rev Microbiol 63:541–556. doi:10.1146/annurev.micro.62.081307.162918

    CAS  Article  PubMed  Google Scholar 

  29. Mantelin S, Touraine B (2004) Plant growth promoting bacteria and nitrate availability: impacts on root development and nitrate uptake. J Exp Bot 55:27–34. doi:10.1093/jxb/erh010

    CAS  Article  PubMed  Google Scholar 

  30. Marschner P, Kandeler E, Marschner B (2003) Structure and function of the soil microbial community in a long-term fertilizer experiment. Soil Biol Biochem 35:453–461. doi:10.1016/S0038-0717(02)00297-3

    CAS  Article  Google Scholar 

  31. Miyazawa M, Pavan MA, Muraoka T, Carmo CAFS, Melo WJ (2009) Análise química de tecido vegetal. In: Silva FC (ed) Manual de análises químicas de solos, plantas e fertilizantes. Embrapa Informação Tecnológica, Brazil, pp. 191–234

    Google Scholar 

  32. Molina-Favero C, Creus CM, Simontacchi M, Puntarulo S, Lamattina L (2008) Aerobic nitric oxide production by Azospirillum brasilense sp245 and its influence on root architecture in tomato. Mol Plant-Microbe Interact 21:1001–1009. doi:10.1094/MPMI-21-7-1001

    CAS  Article  PubMed  Google Scholar 

  33. Motomizu S, Oshima M (1987) Spectrophotometric determination of phosphorus as orthophosphate based on solvent extraction of the ion associate of molybdophosphate with malachite green using flow injection. Analyst 112. doi:10.1039/AN9871200295

  34. Neumann G, Römheld V (1999) Root excretion of carboxylic acids and protons in phosphorus-deficient plants. Plant Soil 211:121–130. doi:10.1023/A:1004380832118

    CAS  Article  Google Scholar 

  35. Phillips RP, Finzi AC, Bernhardt ES (2011) Enhanced root exudation induces microbial feedbacks to N cycling in a pine forest under long-term CO2 fumigation. Ecol Lett 14:187–194. doi:10.1111/j.1461-0248.2010.01570.x

    Article  PubMed  Google Scholar 

  36. Přikryl Z, Vančura V (1980) Root exudates of plants. Plant Soil 57:69–83. doi:10.1007/BF02139643

    Article  Google Scholar 

  37. R Development Core Team (2013) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna ISBN 3-900051-07-0, URL http://www.R-project.org

    Google Scholar 

  38. Rodriguez H, Gonzalez T, Goire I, Bashan Y (2004) Gluconic acid production and phosphate solubilization by the plant growth-promoting bacterium Azospirillum spp. Naturwissenschaften 91:552–555. doi:10.1007/s00114-004-0566-0

    CAS  Article  PubMed  Google Scholar 

  39. Roy ED, Richards PD, Martinelli LA, Coletta LD, Lins SRM, Vazquez FF, Willig E, Spera SA, VanWey LK, Porder S (2016) The phosphorus cost of agricultural intensification in the tropics. Nat Plants 16043. doi:10.1038/nplants.2016.43

  40. Ryu CM, Farag MA, CH H, Reddy MS, Kloepper JW, Paré PW (2004) Bacterial volatiles induce systemic resistance in Arabidopsis. Plant Physiol 134:1017–1026. doi:10.1104/pp.900104

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  41. Shipley B, Keddy PA (1988) The relationship between relative growth rate and sensitivity to nutrient stress in twenty-eight species of emergent macrophytes. J Ecol 76:1101–1110. doi:10.2307/2260637

    Article  Google Scholar 

  42. Somers E, Vanderleyden J, Srinivasan M (2004) Rhizosphere bacterial signalling: a love parade beneath our feet. Crit Rev Microbiol 30:205–240. doi:10.1080/10408410490468786

    CAS  Article  PubMed  Google Scholar 

  43. Spaepen S, Vanderleyden J, Remans R (2007) Indole-3-acetic acid in microbial and microorganism-plant signaling. FEMS Microbiol Rev 31:425–448. doi:10.1111/j.1574-6976.2007.00072.x

    CAS  Article  PubMed  Google Scholar 

  44. Steenhoudt O, Vanderleyden J (2000) Azospirillum, a free-living nitrogen-fixing bacterium closely associated with grasses: genetic, biochemical and ecological aspects. FEMS Microbiol Rev 24:487–506. doi:10.1111/j.1574-6976.2000.tb00552.x

    CAS  Article  PubMed  Google Scholar 

  45. Thomas GW (1996) Soil pH and soil acidity. In: Sparks DL, Page AL, Helmke PA, Loeppert RH, Soltanpour PN, Tabatabai MA, Johnston CT, Sumner ME (eds) Methods of soil analysis Part 3 - chemical methods. Soil Science Society of America Inc, USA, pp. 475–490

    Google Scholar 

  46. Thuita M, Pypers P, Herrmann L, Okalebo RJ, Othieno C, Muema E, Lesueur D (2012) Commercial rhizobial inoculants significantly enhance growth and nitrogen fixation of a promiscuous soybean variety in Kenyan soils. Biol Fertil Soils 48:87–96. doi:10.1007/s00374-011-0611-z

    Article  Google Scholar 

  47. Tilman D (1999) Global environmental impacts of agricultural expansion: the need for sustainable and efficient practices. Proc Natl Acad Sci U S A 96:5995–6000. doi:10.1073/pnas.96.11.5995

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  48. van Raij B, Quaggio JA, Silva NM (1986) Extraction of phosphorus, potassium, calcium, and magnesium from soils by an ion-exchange resin procedure. Commun Soil Sci Plant Anal 17:547–566. doi:10.1080/00103628609367733

    Article  Google Scholar 

  49. Veneklaas EJ, Stevens J, Cawthray GR, Turner S, Grigg AM, Lambers H (2003) Chickpea and white lupin rhizosphere carboxylates vary with soil properties and enhance phosphorus uptake. Plant Soil 248:187–197. doi:10.1023/A:1022367312851

    CAS  Article  Google Scholar 

  50. World Bank (2014). Fertilizer consumption (kilograms per hectare of arable land) http://data.worldbank.org/indicator/AG.CON.FERT.ZS/countries?display=graph. Accessed 9 Dec. 2014

  51. Zar JH (2010) Data transformations. In: Zar JH (ed) Bioestatistical analysis, 5th edn. Pearson Education, USA, pp. 286–295

    Google Scholar 

Download references

Acknowledgments

The study was financially supported by the Programa Institucional de Bolsa de Iniciação Científica (PIBIC), of the National Council of Technological and Scientific Development (CNPq), by São Paulo Research Foundation (FAPESP Grant no. 2010/17204-0, FAPESP/Microsoft Grant no. 2011/52072-0), and by the Universidade Estadual de Campinas (UNICAMP). RSO received research productivity scholarship from CNPq. The fellowship between UNICAMP and University of Western Australia (UWA) was granted by the Ciências sem Fronteiras (CsF) program (CAPES: 88887.108541/2015-00). We are thankful for four anonymous reviewers for their very insightful and constructive comments. We thank I. Marriel, of Embrapa- Milho e Sorgo (CNPMS), for the donation of maize seeds used in this experiment, and F.B. Sei, of Total Biotecnologia, for the donation of the inoculant of Azospirillum brasilense used in this experiment. We are also thankful to A. Abrahão for critical reading of this manuscript; and A.L. Mansur for the assistance with the installation of the experiment; and P. Mazzafera for the use of the equipment (FAPESP 2008/58035-6).

Author information

Affiliations

Authors

Corresponding author

Correspondence to André Mouro D’Angioli.

Additional information

Responsible Editor: Stéphane Compant.

Electronic supplementary material

ESM 1

(DOCX 82 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

D’Angioli, A.M., Viani, R.A.G., Lambers, H. et al. Inoculation with Azospirillum brasilense (Ab-V4, Ab-V5) increases Zea mays root carboxylate-exudation rates, dependent on soil phosphorus supply. Plant Soil 410, 499–507 (2017). https://doi.org/10.1007/s11104-016-3044-5

Download citation

Keywords

  • Carboxylates
  • Leaf manganese concentration
  • Mutualism
  • Phosphorus
  • Plant growth-promoting rhizobacteria