Skip to main content
Log in

In situ quantification of forage grass root biomass, distribution and diameter classes under two N fertilisation rates

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Background & aims

Roots are of paramount importance in protecting grassland in numerous ecosystem services e.g. soil organic matter build-up. However, studies that quantified root biomass in grasslands predominantly focused on areas managed less intensively than the management that is common to most North-West European grassland-based farms. To fill this knowledge gap, we compared, root and stubble biomass, the distribution in the soil and root diameter classes of five common European forage grass species grown under intensive management.

Methods

On a 3 year old trial comparing yield of five cool season forage grass species at two N fertilization levels (190 kg N ha−1 yr−1 or 300 kg N ha−1 yr−1) we sampled root and stubble biomass until a depth of 90 cm deep.

Results

Tall fescue (Festuca arundinacea) displayed the highest root and stubble biomass and had the highest mean root diameters of all studied grass species. The total dry biomass below cutting height (stubble + roots up to a depth of 90 cm below the soil surface) varied between 18 and 19 tonnes ha−1 for tall fescue and 10 and 11 tonnes ha−1 for Festulolium at 190 kg N ha−1 yr−1 and 300 kg N ha−1 yr−1, respectively.

Conclusions

Our findings emphasize that in intensively managed grassland, root and stubble biomass under a 3 years old sward can be as high as 19 t DM ha−1. Owing to the high forage and root biomass of tall fescue, this species has a high potential in maintaining several ecosystem services.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Bolinder MA, Angers DA, Belanger G, Michaud R, Laverdiere MR (2002) Root biomass and shoot to root ratios of perennial forage crops in eastern Canada. Can J Plant Sci 82:731–737

    Article  Google Scholar 

  • Bonos SA, Rush D, Hignight K, Meyer WA (2004) Selection for deep root production in tall fescue and perennial ryegrass. Crop Sci 44:1770–1775

    Article  Google Scholar 

  • Cougnon M, Deru J, Eekeren N, Baert J, Reheul D, Helgadóttir Á, Hopkins A (2013) Root depth and biomass of tall fescue vs. perennial ryegrass. Grassland Sci Eur 18:285–287

    Google Scholar 

  • Cougnon M, Baert J, Van Waes C, Reheul D (2014) Performance and quality of tall fescue (Festuca arundinacea Schreb.) and perennial ryegrass (Lolium perenne L.) and mixtures of both species grown with or without white clover (Trifolium repens L.) under cutting management. Grass Forage Sci 69:666–677

    Article  Google Scholar 

  • Deinum B (1985) Root mass of grass swards in different grazing systems. Neth J Agric Sci 33:377–384

    Google Scholar 

  • Dennis SJ, Moir JL, Cameron KC, Edwards GR, Di HJ (2013) Measuring excreta patch distribution in grazed pasture through low-cost image analysis. Grass Forage Sci 68:378–385. doi:10.1111/gfs.12000

    Article  Google Scholar 

  • Deru J, Schilder H, van der Schoot JR, van Eekeren N (2014) Genetic differences in root mass of Lolium perenne varieties under field conditions. Euphytica 199:223–232. doi:10.1007/s10681-014-1129-x

    Article  Google Scholar 

  • Hejduk S, Hrabe F (2003) Influence of different systems of grazing, type of swards and fertilizing on underground phytomass of pastures. Plant Soil Environ 49:18–23

    Google Scholar 

  • Hoekstra NJ, Suter M, Finn JA, Husse S, Lüscher A (2015) Do belowground vertical niche differences between deep- and shallow-rooted species enhance resource uptake and drought resistance in grassland mixtures? Plant Soil 394:21–34. doi:10.1007/s11104-014-2352-x

    Article  CAS  Google Scholar 

  • Hopkins A, Del Prado A (2007) Implications of climate change for grassland in Europe: impacts, adaptations and mitigation options: a review. Grass Forage Sci 62:118–126

    Article  CAS  Google Scholar 

  • IPCC 2013: Climate Change (2013) In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, The Physical Science Basis

    Google Scholar 

  • Loiseau P, Soussana J (1999) Elevated [CO2], temperature increase and N supply effects on the accumulation of below-ground carbon in a temperate grassland ecosystem. Plant Soil 212:123–131

    Article  CAS  Google Scholar 

  • Macleod CK, Humphreys MW, Whalley WR, Turner L, Binley A, Watts CW, Skot L, Joynes A, Hawkins S, King IP, O'Donovan S, Haygarth PM (2013) A novel grass hybrid to reduce flood generation in temperate regions. Sci Rep 3:1683. doi:10.1038/srep01683

    Article  CAS  PubMed  Google Scholar 

  • Malcolm BJ, Cameron KC, Di HJ, Edwards GR, Moir JL (2014) The effect of four different pasture species compositions on nitrate leaching losses under high N loading. Soil Use Manag 30:58–68. doi:10.1111/sum.12101

    Article  Google Scholar 

  • McCormack ML, Dickie IA, Eissenstat DM, Fahey TJ, Fernandez CW, Guo D, Helmisaari H-S, Hobbie EA, Iversen CM, Jackson RB, Leppälammi-Kujansuu J, Norby RJ, Philips RP, Pregitzer KS, Pritchard SG, Rewald B, Zadworny M (2015) Redefining fine roots improves understanding of below-ground contributions to terrestrial biosphere processes. New Phytol 207:505–518

    Article  PubMed  Google Scholar 

  • Moir JL, Edwards GR, Berry LN (2013) Nitrogen uptake and leaching loss of thirteen temperate grass species under high N loading. Grass Forage Sci 68(2):313–325. doi:10.1111/j.1365-2494.2012.00905.x

    Article  CAS  Google Scholar 

  • Necpálová M, Li D, Lanigan G, Casey IA, Burchill W, Humphreys J (2014) Changes in soil organic carbon in a clay loam soil following ploughing and reseeding of permanent grassland under temperate moist climatic conditions. Grass Forage Sci 69:611–624. doi:10.1111/gfs.12080

    Article  Google Scholar 

  • Nelder JA, Mead R (1965) A simplex method for function minimization. Comput J 7:308–313

    Article  Google Scholar 

  • Poirier M, Durand J-L, Volaire F (2012) Persistence and production of perennial grasses under water deficits and extreme temperatures: importance of intraspecific vs. interspecific variability. Glob Chang Biol 18:3632–3646. doi:10.1111/j.1365-2486.2012.02800.x

    Article  Google Scholar 

  • Rasmussen J, Eriksen J, Jensen ES, Høgh-Jensen H (2010) Root size fractions of ryegrass and clover contribute differently to C and N inclusion in SOM. Biol Fertil Soils 46:293–297. doi:10.1007/s00374-009-0430-7

    Article  CAS  Google Scholar 

  • Rasse DP, Rumpel C, Dignac M-F (2005) Is soil carbon mostly root carbon? Mechanisms for a specific stabilisation. Plant Soil 269:341–356. doi:10.1007/s11104-004-0907-y

    Article  CAS  Google Scholar 

  • Reheul D, Cougnon M, De Cauwer B, Swanckaert J, Pannecoucque J, D’Hose T, Van den Nest T, De Caesteker E, Vaes R, Peeters A (2015) Production potential of grassland and fodder crops in high-output systems in the Low Countries in north western Europe and how to deal with limiting factors. Grassland Sci Eur 20:3–11

    Google Scholar 

  • Schneider MK, Luscher A, Frossard E, Nosberger J (2006) An overlooked carbon source for grassland soils: loss of structural carbon from stubble in response to elevated pCO2 and nitrogen supply. New Phytol 172:117–126. doi:10.1111/j.1469-8137.2006.01796.x

    Article  CAS  PubMed  Google Scholar 

  • Soussana JF, Loiseau P, Vuichard N, Ceschia E, Balesdent J, Chevallier T, Arrouays D (2004) Carbon cycling and sequestration opportunities in temperate grasslands. Soil Use Manag 20:219–230

    Article  Google Scholar 

  • Soussana JF, Tallec T, Blanfort V (2010) Mitigating the greenhouse gas balance of ruminant production systems through carbon sequestration in grasslands. Animal 4:334–350. doi:10.1017/S1751731109990784

    Article  CAS  PubMed  Google Scholar 

  • Surault F, Veron R, Chataigner F, Huyghe C (2007) Comportement de prairies mono ou plurispécifiques en année à déficit hydrique marqué. Fourrages 192:507–510

    Google Scholar 

  • Tomaškin J, Jančovič J, Vozár Ľ, Tomaškinová J (2013) The effect of mineral fertilization on belowground plant biomass of grassland ecosystems. Acta Univ Agric Silviculturae Mendelianae Brunensis 61:1431–1440. doi:10.11118/actaun201361051431

    Article  Google Scholar 

  • Van den Pol-van Dasselaar A, Vellinga T, Johansen A, Kennedy E (2008) To graze or not to graze, that’s the question. Grassland Sci Eur 13:706–716

    Google Scholar 

  • Van Eekeren N, Bos M, De Wit J, Keidel H, Bloem J (2010) Effect of individual grass species and grass species mixtures on soil quality as related to root biomass and grass yield. Appl Soil Ecol 45:275–283

    Article  Google Scholar 

  • Volaire F, Barkaoui K, Norton M (2014) Designing resilient and sustainable grasslands for a drier future: adaptive strategies, functional traits and biotic interactions. Eur J Agron 52:81–89. doi:10.1016/j.eja.2013.10.002

    Article  Google Scholar 

  • Wilman D, Gao Y, Leitch M (1998) Some differences between eight grasses within the Lolium‐Festuca complex when grown in conditions of severe water shortage. Grass Forage Sci 53:57–65

    Article  Google Scholar 

  • Zobel RW (2013) Lolium perenne L. root systems are a collection of Gaussian curve shaped meso diameter class length distributions. Plant Soil 363:113–121. doi:10.1007/s11104-012-1298-0

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mathias Cougnon.

Additional information

Responsible Editor: Alexia Stokes.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Table S1

(DOC 13 kb)

ESM 1

(JPG 4689 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cougnon, M., De Swaef, T., Lootens, P. et al. In situ quantification of forage grass root biomass, distribution and diameter classes under two N fertilisation rates. Plant Soil 411, 409–422 (2017). https://doi.org/10.1007/s11104-016-3034-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-016-3034-7

Keywords

Navigation