Skip to main content

Mechanisms of plant response to salt and drought stress and their alteration by rhizobacteria

Abstract

Background

Soil salinity and drought are an enormous worldwide problem for agriculture, horticulture and silviculture. The initial responses of plants to drought and salinity are similar; both are attributed to water deficit which inhibits plant growth and development.

Scope

In this review, an overview of the major physiological and biochemical changes that occur in plants as a consequence of salt and drought stress is presented. In addition, the role of beneficial plant growth-promoting bacteria in ameliorating many of the deleterious consequences of salt and drought stress is discussed. Mechanisms used by plant growth-promoting bacteria to ameliorate the effects of these stresses include the production of cytokinin, indoleacetic acid, ACC deaminase, abscisic acid, trehalose, volatile organic compounds, and exopolysaccharides.

Conclusion

Given the fundamental understanding of many of the mechanisms operating in plant-bacterial interactions, it is expected that the practical use of beneficial bacteria in agriculture, horticulture and silviculture will grow dramatically in the coming years.

Overview of salt- and drought-stress responses in plants. The perception of stress by plant cell elicits stress-signaling pathways that involve transcriptional remodeling, metabolic changes and altered hormonal activity. Bacterial activity may affect the latter. A positive stress response leads to plant tolerance of the stress while a negative response leads to growth inhibition

This is a preview of subscription content, access via your institution.

Fig. 1

References

  • Aamir M, Aslam A, Khan MY, Jamshaid MU, Ahmad M, Asghar HN, Zahir ZA (2013) Co-inoculation with Rhizobium and plant growth promoting rhizobacteria (PGPR) for inducing salinity tolerance in mung bean under field condition of semi-arid climate. Asian J Agri. Biol 1:17–22

    Google Scholar 

  • Abd El-Samad HM (2013) The physiological response of wheat plants to exogenous application of gibberellic acid (GA3) or indole-3-acetic acid (IAA) with endogenous ethylene under salt stress conditions. Int J Plant Physiol Biochem 5:58–64

  • Abd El-Samad Hamdia M, Shaddad MAK, Doaa MM (2004) Mechanisms of salt tolerance and interactive effects of inoculation on maize cultivars under salt stress conditions. Plant Growth Regulat 44:165–174

    Article  Google Scholar 

  • Abeles FB, Morgan PW, Saltveit ME Jr (1992) Ethylene in plant biology. Academic Press, New York

    Google Scholar 

  • Afzal I, Basra S, Iqbal A (2005) The effect of seed soaking with plant growth regulators on seedling vigor of wheat under salinity stress. J Stress Physiol Biochem 1:6–14

    Google Scholar 

  • Ahmad M, Zahir ZA, Nazli F, Akram F, Arshad M, Khalid M (2013) Effectiveness of halo-tolerant, auxin producing Pseudomonas and Rhizobium strains to improve osmotic stress tolerance in mung bean (Vigna radiata L. Braz J Microbiol 44:1341–1348

    PubMed  Article  Google Scholar 

  • Ahmad P, Rasool S, Gul A, Sheikh SA, Akram NA, Ashraf M, Kazi AM, Gucel S (2016) Jasmonates: multifunctional roles in stress tolerance. Front. Plant Sci. 7:813. doi:10.3389/fpls.2016.00813

    PubMed  PubMed Central  Google Scholar 

  • Ahmed IM, Nadira UA, Bibi N, Cao F, He X, Zhang G, Wu F (2015) Secondary metabolism and antioxidants are involved in the tolerance to drought and salinity, separately and combined, in Tibetan wild barley. Environ Exper. Botany 111:1–12

    CAS  Google Scholar 

  • Alcázar R, Altabella T, Marco F, Bortolotti C, Reymond M, Koncz C, Carrasco P, Tiburcio AF (2010) Polyamines: molecules with regulatory functions in plant abiotic stress tolerance. Planta 231:1237–1249

    PubMed  Article  CAS  Google Scholar 

  • Ali S, Charles TC, Glick BR (2014) Amelioration of damages caused by high salinity stress by plant growth-promoting bacterial endophytes. Plant Physiol Biochem 80:160–167

    CAS  PubMed  Article  Google Scholar 

  • Araus JL, Slafer GA, Royo C, Serret MD (2008) Breeding for yield potential and stress adaptation in cereals. Cr rev. Plant Sci 27:6

    Google Scholar 

  • Arkhipova TN, Prinsen E, Veselov SU, Martinenko EV, Melentiev AI, Kudoyarova GR (2007) Cytokinin producing bacteria enhance plant growth in drying soil. Plant Soil 292:305–315

    CAS  Article  Google Scholar 

  • Atkinson NJ, Urwin PE (2012) The interaction of plant biotic and abiotic stresses: from genes to the field. J Exper. Botany 63:3523–3543

    CAS  Google Scholar 

  • Aziz A, Martin-Tanguy J, Larher F (1998) Stress-induced changes in polyamine and tyramine levels can regulate proline accumulation in tomato leaf discs treated with sodium chloride. Physiol Plant 104:195–202

    CAS  Article  Google Scholar 

  • Badri DV, Vivanco JM (2009) Regulation and function of root exudates. Plant Cell Environ 32:666–681

    CAS  PubMed  Article  Google Scholar 

  • Balderas-Hernández VE, Alvarado-Rodríguez M, Fraire-Velázquez S (2013) Conserved versatile master regulators in signaling pathways in response to stress in plants. AoB PLANTS 5:plt033. doi:10.1093/aobpla/plt033

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • Ballizany WL, Hofmann RW, Jahufer MZZ, Barrett BA (2012) Genotype x environment analysis of flavonoid accumulation and morphology in white clover under contrasting field conditions. Field Crops Res 128:156–166

    Article  Google Scholar 

  • Bandurska H, Stroìnski A (2005) The effect of salicylic acid on barley response to water deficit. Acta Physiol Plant 27:379–386

    CAS  Article  Google Scholar 

  • Bangash N, Khalid A, Mahmood T, Siddique MT (2013) Screening rhizobacteria containing ACC-deaminase for growth promotion of wheat under water stress. Pak J Bot 45(SI):91–96

    CAS  Google Scholar 

  • Bartels D, Sunkar R (2005) Drought and salt tolerance in plants. Crit Rev Plant Sci 24:23–28

    CAS  Article  Google Scholar 

  • Belimov AA, Dodd IC, Hontzeas N, Theobald JC, Safranova VI, Davies WJ (2009) Rhizosphere bacteria containing 1-aminocyclopropane-1-carboxylate deaminase increase yield of plants grown in drying soil via both local and systemic hormone signaling. New Phytol 181:413–423

    CAS  PubMed  Article  Google Scholar 

  • Belimov AA, Dodd IC, Safronova VI, Shaposhnikov AI, Azarova TS, Makarova NM, Davies WJ, Tikhonovich IA (2015) Rhizobacteria that produce auxins and contain1-amino-cyclopropane-1-carboxylic acid deaminase decrease amino acid concentrations in the rhizosphere and improve growth and yield of well-watered and water-limited potato (Solanum tuberosum. Ann Appl Biol 167:11–25

    CAS  Article  Google Scholar 

  • Bianco C, Defez R (2009) Medicago truncatula improves salt tolerance when nodulated by an indole-3-acetic acid-overproducing Sinorhizobium meliloti strain. J Exp Bot 60:3097–3107

    CAS  PubMed  Article  Google Scholar 

  • Bianco C, Imperlini E, Calogero R, Senatore B, Amoresano A, CarpentieriA PP, Defez R (2006) Indole-3-acetic acid improves Escherichia coli’s defences to stress. Arch Microbiol 185:373–382

    CAS  PubMed  Article  Google Scholar 

  • Bray EA, Bailey-Serres J, Weretilnyk E (2000) Responses to abiotic stresses,” in biochemistry and molecular biology of plants, eds B. B. Buchanan, W. Gruissem, and R. L. Jones (Rockville. Am Soc Plant Physiol:1158–1203

  • Brígido C, Nascimento F, Duan J, Glick BR, Oliveira S (2013) Expression of an exogenous 1-aminocyclopropane-1-carboxylate deaminase gene in Mesorhizobium spp. reduces the negative effects of salt stress in chickpea. FEMS Microbiol Lett 349:46–53

    PubMed  Google Scholar 

  • Brunner I, Herzog C, Dawes MA, Arend M, Sperisen C (2015) How tree roots respond to drought. Front Plant Sci 6:547. doi:10.3389/fpls.2015.00547

    PubMed  PubMed Central  Article  Google Scholar 

  • Chalker-Scott L (1999) Environmental significance of anthocyanins in plant stress responses. Photochem Photobiol 70:1–9

    CAS  Article  Google Scholar 

  • Chang P, Gerhardt KE, Huang X-D, Yu X-M, Glick BR, Gerwing PD, Greenberg BM (2014) Plant growth-promoting bacteria that contain ACC deaminase facilitate the growth of barley and oats in salt-impacted soil: potential for phytoremediation of saline soils. Internat J Phytoremed 16:1133–1147

    CAS  Article  Google Scholar 

  • Chen L, Dodd IC, Davies WJ, Wilkinson S (2013) Ethylene limits abscisic acid- or drying-induced stomatal closure in aged wheat leaves. Plant Cell Environ 38:1850–1856

    Article  CAS  Google Scholar 

  • Cheng Z, Park E, Glick BR (2007) 1-aminocyclopropane-1-carboxylate (ACC) deaminase from Pseudomonas putida UW4 facilitates the growth of canola in the presence of salt. Can J Microbiol 53:912–918

    CAS  PubMed  Article  Google Scholar 

  • Cho S-T, Chang H-H, Egamberdieva D, Kamilova F, Lugtenberg B, Kuo C-H (2015) Genome analysis of Pseudomonas fluorescens PCL1751: a rhizobacterium that controls root diseases and alleviates salt stress for its plant host. PLoS ONE. doi:10.1371/journal.pone.0140231

    Google Scholar 

  • Chrispeels MJ, Maurel C (1994) Aquaporins: the molecular basis of facilitated water movement through living plant cells. Plant Physiol 105:9–15

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Cohen AC, Bottini R, Piccoli PN (2008) Azospirillum brasilense Sp245 produces ABA in chemically-defined culture medium and increases ABA content in Arabidopsis plants. Plant Growth Regul 54:97–103

    CAS  Article  Google Scholar 

  • Cohen AC, Travaglia CN, Bottini R, Piccoli PN (2009) Participation of abscisic acid and gibberellins produced by endophytic Azospirillum in the alleviation of drought effects in maize. Botany 87:455–462

    CAS  Article  Google Scholar 

  • Collins NC, Tardieu F, Tuberosa R (2008) Quantitative trait loci and crop performance under abiotic stress: where do we stand? Plant Physiol 147:469–486

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Contreras-Cornejo HA, Macías-Rodríguez L, Alfaro-Cuevas R, López-Bucio J (2014) Trichoderma spp. improve growth of Arabidopsis seedlings under salt stress through enhanced root development, osmolite production, and Na+ elimination through root exudates. Molec Plant-Microbe Interact 27:503–514

    CAS  Article  Google Scholar 

  • Cutler SR, Rodriguez PL, Finkelstein RR, Abrams SR (2010) Abscisic acid: emergence of a core signaling network. Ann rev. Plant Biol 61:651–679

    CAS  Article  Google Scholar 

  • Daneshmand F, Arvin MJ, Kalantari KM (2010) Physiological responses to NaCl stress in three wild species of potato in vitro. Acta Physiol Plant 32:91–101

    CAS  Article  Google Scholar 

  • Dar TA, Uddin M, Khan MMA, Hakeem KR, Jaleel H (2015) Jasmonates counter plant stress: a review. Environ Exp Bot 115:49–57

    CAS  Article  Google Scholar 

  • Daszkowska-Golec A, Szarejko I (2013) Open or close the gate – stomata action under the control of phytohormones in drought stress conditions. Front Plant Sci 4:138

    PubMed  PubMed Central  Article  Google Scholar 

  • Deinlein U, Stephan AB, Horie T, Luo W, Xu G, Schroeder JI (2014) Plant salt-tolerance mechanisms. Trends Plant Sci 19(6):371–379

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Del Rio L (2015) ROS and RNS in plant physiology: an overview. J Exp Bot 66:2827–2837

    CAS  PubMed  Article  Google Scholar 

  • Di Cori P, Lucioli S, Frattarelli A, Nota P, Tel-Or E, Benyamini E, Gottlieb H, Caboni E, Forni C (2013) Characterization of the response of in vitro cultured Myrtus communis L. plants to high concentrations of NaCl. Plant Physiol Biochem 73:420–426

    CAS  PubMed  Article  Google Scholar 

  • Dodd IC, Pérez-Alfocea F (2012) Microbial amelioration of crop salinity stress. J Exp Bot 63:3415–3428

    CAS  PubMed  Article  Google Scholar 

  • Dodd IC, Zinovkina NY, Safronova VI, Belimov AA (2010) Rhizobacterial mediation of plant hormone status. Ann Appl Biol 157:361–379

    CAS  Article  Google Scholar 

  • Dolferus R (2014) To grow or not to grow: a stressful decision for plants. Plant Sci 229:247–261

    CAS  PubMed  Article  Google Scholar 

  • Dong FC, Wang PT, Song CP (2001) The role of hydrogen peroxide in salicylic acid-induced stomatal closure in Vicia faba guard cells. Acta Phytophysiol Sin 27:296–302

    CAS  Google Scholar 

  • Dong W, Wang M, Xu F, Quan T, Peng K, Xiao L, Xia G (2013) Wheat oxophytodienoate reductase gene TaOPR1 confers salinity tolerance via enhancement of abscisic acid signaling and reactive oxygen species scavenging. Plant Physiol 161:1217–1228

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Dubrovsky JG, Sauer M, Napsucialy-Mendivil S, Ivanchenko MG, Friml J, Shishkova S, Celenza J, Benková E (2008) Auxin acts as a local morphogenetic trigger to specify lateral root founder cells. Proc Natl Acad Sci U S A 105:8790–8794

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Egamberdieva D (2009) Alleviation of salt stress by plant growth regulators and IAA producing bacteria in wheat. Acta Physiol Plant 31:861–864

    CAS  Article  Google Scholar 

  • Egamberdieva D, Kucharova Z, Davranov K, Berg G, Makarova N, Azarova T, Chebotar V, Tikhonovich I, Kamilova F, Validov SZ, Lugtenberg B (2011) Bacteria able to control foot and root rot and to promote growth of cucumber in salinated soils. Biol Fertil Soils 47:197–205

    CAS  Article  Google Scholar 

  • Egamberdieva D, Jabborova D, Mamadalieva N (2013) Salt-tolerant Pseudomonas extremorintalis able to stimulate growth of Silybum marianum under salt stress. Med Arom Plant Sci Biotechnol 7:7–10

    Google Scholar 

  • Egamberdieva D, Jabborova D, Hashem A (2015) Pseudomonas induces salinity tolerance in cotton (Gossypium hirsutum) and resistance to Fusarium root rot through the modulation of indole-3-acetic acid. Saudi J Biol Sci: in press

  • Elfving N, Davoine C, Benlloch R, Blomberg J, Brännstrӧm K, Müller D, Nilsson A, Ulfstedt M, Ronne H, Wingsle G, Nilsson O, Bjӧrklund S (2011) The Arabidopsis thaliana Med25 mediator subunit integrates environmental cues to control plant development. Proc Nat Acad Sci USA 108:8245–8250

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Ferdous J, Hussain SS, Shi B-J (2015) Role of microRNAs in plant drought tolerance. Plant Biotechnol J 13:293–305

    CAS  PubMed  Article  Google Scholar 

  • Forni C, Braglia R, Harren FJM, Cristescu SM (2012) Stress responses of duckweed (Lemna minor L.) and water velvet (Azolla filiculoides lam.) to anionic surfactant sodium-dodecyl-sulphate (SDS). Aquat Toxicol 110–111: 107–113

  • Fujita Y, Fujita M, Satoh R, Maruyama K, Parvez MM, Seki M, Hiratsu K, Ohme-Takagi M, Shinozaki K, Yamaguchi-Shinozaki K (2005) AREB1 is a transcription activator of novel ABRE-dependent ABA signaling that enhances drought stress tolerance in Arabidopsis. Plant Cell 17:3470–3488

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Gamalero E, Berta G, Massa N, Glick BR, Lingua G (2010) Interactions between Pseudomonas putida UW4 and Gigaspora rosea BEG9 and their consequences on the growth of cucumber under salt stress conditions. J Appl Microbiol 108:236–245

    CAS  PubMed  Article  Google Scholar 

  • Gepstein S, Glick BR (2013) Strategies to ameliorate abiotic stress-induced plant senescence. Plant Molec. Biol 82:623–633

    CAS  Google Scholar 

  • Ghanem ME, Albacete A, Smigocki AC, Frébort I, Pospisilova H, Martinez-Andùjar C, Acosta M, Sánchez-Bravo J, Dodd IC, Pérez-Alfocea F (2011) Root-synthesized cytokinins improve shoot growth and fruit yield in salinized tomato (Solanum lycopersicum L.) plants. J Exp Bot 62:125–140

    CAS  PubMed  Article  Google Scholar 

  • Ghorai S, Pal KK, Dey R (2015) Alleviation of salinity stress in groundnut by application of PGPR. Int res. J Eng Technol 2:742–750

    Google Scholar 

  • Gill SS, Tuteja N (2010) Polyamines and abiotic stress tolerance in plants. Plant Signal Behav 5(1):26–33

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Glick BR (2012) Plant growth-promoting bacteria: mechanisms and applications. Scientifica 2012(Article ID 963401):15. doi:10.6064/2012/963401

    Google Scholar 

  • Glick BR, Penrose DM, Li J (1998) A model for the lowering of plant ethylene concentrations by plant growth promoting bacteria. J Theor Biol 190:63–68

    CAS  PubMed  Article  Google Scholar 

  • Glick BR, Cheng Z, Czarny J, Duan J (2007) Promotion of plant growth by ACC deaminase-containing soil bacteria. Eur J Plant Pathol 119:329–339

    CAS  Article  Google Scholar 

  • Golldack D, Lüking I, Yang O (2011) Plant tolerance to drought and salinity: stress regulating transcription factors and their functional significance in the cellular transcriptional network. Plant Cell Rep 30:1383–1391

    CAS  PubMed  Article  Google Scholar 

  • Golldack D, Li C, Mohan H, Probst N (2014) Tolerance to drought and salt stress in plants: unraveling the signaling networks. Front Plant Sci 5, art 151: 1–10. doi:10.3389/fpls.2014.00151

  • Han S, Yu B, Wang Y, Liu Y (2011) Role of plant autophagy in stress response. Protein Cell 2:784–791

    PubMed  PubMed Central  Article  Google Scholar 

  • Han Y, Wang R, Yang Z, Zhan Y, Ma Y, Ping S, Zhang L, Lin M, Yan Y (2015) 1-aminocyclopropane-1-carboxylate deaminase from Pseudomonas stutzeri A1501 facilitates the growth of rice in the presence of salt or heavy metals. J Microbiol Biotechnol 25:1119–1128

    CAS  PubMed  Article  Google Scholar 

  • Huang D, Wu W, Abrams SR, Cutler AJ (2008) The relationship of drought-related gene expression in Arabidopsis thaliana to hormonal and environmental factors. J Exp Bot 59:2991–3007

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Huang G-T, Ma S-L, Bai L-P, Zhang L, Ma H, Jia P, Liu J, Zhong M, Guo Z-F (2012) Signal transduction during cold, salt, and drought stresses in plants. Molec Biol Rep 39:969–987

  • Javid MG, Sorooshzadeh A, Moradi F, Modarres Sanavy SAM, Allahdadi I (2011) The role of phytohormones in alleviating salt stress in crop plants. Austral. J Crop Sci 5:726–734

    CAS  Google Scholar 

  • Jeong D-H, Green PJ (2013) The role of rice microRNAs in abiotic stress responses. Plant Biol 56:187–197

    CAS  Article  Google Scholar 

  • Jha Y, Subramanian RB (2013) Paddy plants inoculated with PGPR show better growth physiology and nutrient content under saline conditions. Chil J Agri Res 73:213–219

    Article  Google Scholar 

  • Jiménez-Bremont JF, Ruiz OA, Rodriguez-Kessler M (2007) Modulation of spermidine and spermine levels in maize seedlings subjected to long-term salt stress. Plant Physiol Biochem 45:812–821

    PubMed  Article  CAS  Google Scholar 

  • Joo GJ, Kim YM, Kim JT, Rhee IK, Kim JH, Lee IJ (2005) Gibberellins-producing rhizobacteria increase endogenous gibberellins content and promote growth of red peppers. J Microbiol 43:510–515

    CAS  PubMed  Google Scholar 

  • Jung JH, Park CM (2011) Auxin modulation of salt stress signaling in Arabidopsis seed germination. Plant Signal Behav 6:1198–1200

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Kang G, Li G, Zheng B, Han Q, Wang C, Zhu Y, Guo T (2012) Proteomic analysis on salicylic acid-induced salt tolerance in common wheat seedlings (Triticum aestivum L.). Biochim Biophys Acta 1824:1324–1333

    CAS  PubMed  Article  Google Scholar 

  • Kasotia A, Jain S, Vaishnav A, Kumari S (2012) Soybean growth-promotion by Pseudomonas sp. strain VS1 under salt stress. Pak J Biol Sci 15:698–701

    PubMed  Article  Google Scholar 

  • Kazan K (2015) Diverse roles of jasmonates and ethylene in abiotic stress tolerance. Trends Plant Sci 10:219–229

    Article  CAS  Google Scholar 

  • Khan K, Agarwal P, Shanware A, Sane VA (2015) Heterologous expression of two Jatropha aquaporins imparts drought and salt tolerance and improves seed viability in transgenic Arabidopsis thaliana. PLoS One 10(6):e0128866. doi:10.1371/journal.pone.0128866

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • Kiani MZ, Ali A, Sultan T, Ahmad R, Hydar SI (2015) Plant growth promoting rhizobacteria having 1-aminocyclopropane-1-carboxylic acid deaminase to induce salt tolerance in sunflower (Helianthus annus L.). Nat Resour 6:391–397

    Google Scholar 

  • Kim JS, Mizoi J, Kidokoro S, Maruyama K, Nakajima J, Nakashima K, Mitsuda N, Takiguchi Y, Ohme-Takagi M, Kondou Y, Yoshizumi T, Matsui M, Shinozaki K, Yamaguchi-Shinozaki K (2012) Arabidopsis growth-regulating factor7 functions as a transcriptional repressor of abscisic acid- and osmotic stress-responsive genes, including DREB2A. Plant Cell 24:3393–3405

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Kim K, Jang Y-J, Lee S-M, B-T O, Chae J-C, Lee K-J (2014) Alleviation of salt stress by Enterobacter sp. EJ01 in tomato and Arabidopsis is accompanied by up-regulation of conserved salinity responsive factors in plants. Mol Cells 37:109–117

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • Koussevitzky S, Suzuki N, Huntington S, Armijo L, Sha W, Cortes D, Shulaev V, Mittler R (2008) Ascorbate peroxidase 1 plays a key role in the response of Arabidopsis thaliana to stress combination. J Biol Chem 283:34197–34203

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Kreps JA, Wu Y, Chang H-S, Zhu T, Wang X, Harper JFH (2002) Transcriptome changes for Arabidopsis in response to salt, osmotic, and cold stress. Plant Physiol 130:2129–2141

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Kroemer G, Mariño G, Levine B (2010) Autophagy and the integrated stress response. Mol Cell 40:280–293

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Kumar M, Mishra S, Dixit V, Kumar M, Agarwal L, Singh P, Chauhan PS, Nautiyal CS (2015) Synergistic effect of Pseudomonas putida and Bacillus amyloliquefaciens ameliorates drought stress in chickpea (Cicer arietinum L.). Plant Signal Behav. doi:10.1080/15592324.2015.1071004

    Google Scholar 

  • Lee GW, Lee K-J, Chae J-C (2015) Herbaspirillum sp. strain GW103 alleviates salt stress Brassica rapa L. ssp. pekinensis. Protoplasma. doi:10.1007/s00709-015-0872-8

    Google Scholar 

  • Li C, Ng CK-Y, Fan L-M (2015) MYB transcription factors, active players in abiotic stress signaling. Environ Exper Bot 114:80–91

    CAS  Article  Google Scholar 

  • Lim J-J, Kim S-D (2013) Induction of drought stress resistance by multi-functional PGPR Bacillus licheniformis K11 in pepper. Plant Pathol J 29:201–208

    PubMed  PubMed Central  Article  Google Scholar 

  • Liu Q, Kasuga M, Sakuma Y, Abe H, Miura S, Yamaguchi Shinozaki K, Shinozaki K (1998) Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought- and 1308 the plant cell low-temperature-responsive gene expression, respectively, in Arabidopsis. Plant Cell 10:1391–1406

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Liu X, Meng FX, Zhang SQ, Lou CH (2003) Ca2+ is involved in the signal transduction during stomatal movement induced by salicylic acid in Vicia faba. J Plant Physiol Mol Biol 1:59–64

    Google Scholar 

  • Liu Y, Shi Z, Yao L, Yue H, Li H, Li C (2013) Effect of IAA produced by Klebsiella oxytoca Rs-5 on cotton growth under salt stress. J Gen Appl Microbiol 59:59–65

    PubMed  Article  Google Scholar 

  • Liu W, Li R-J, Han T-T, Cai W, Z-W F, Y-T L (2015) Salt stress reduces root meristem size by nitric oxide-mediated modulation of auxin accumulation and signaling in Arabidopsis. Plant Physiol 168:343–356

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Luo ZB, Janz D, Jiang X, Göbel C, Wildhagen H, Tan Y, Rennenberg H, Feussner I, Polle A (2009) Upgrading root physiology for stress tolerance by ectomycorrhizas: insights from metabolite and transcriptional profiling into reprogramming for stress anticipation. Plant Physiol 151:1902–1917

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Mahajan S, Tuteja N (2005) Cold, salinity and drought stresses: an overview. Arch Biochem Biophys 444:139–158

    CAS  PubMed  Article  Google Scholar 

  • Mayak S, Tirosh T, Glick BR (2004a) Plant growth-promoting bacteria that confer resistance to water stress in tomato and pepper. Plant Sci 166:525–530

    CAS  Article  Google Scholar 

  • Mayak S, Tirosh T, Glick BR (2004b) Plant growth-promoting bacteria that confer resistance in tomato to salt stress. Plant Physiol Biochem 42:565–572

    CAS  PubMed  Article  Google Scholar 

  • McNutt M (2014) The drought you can’t see. Science 345:1543

    CAS  PubMed  Article  Google Scholar 

  • Melotto M, Underwood W, Koczan J, Nomura K, He SY (2006) Plant stomata function in innate immunity against bacterial invasion. Cell 126:969–980

    CAS  PubMed  Article  Google Scholar 

  • Miller G, Suzuki N, Ciftci-Yilmaz S, Mittler R (2010) Reactive oxygen species homeostasis and signaling during drought and salinity stresses. Plant Cell Environ 33:453–467

    CAS  PubMed  Article  Google Scholar 

  • Miura K, Tada Y (2014) Regulation of water, salinity, and cold stress responses by salicylic acid. Front Plant Sci 5:1–12

    Article  Google Scholar 

  • Moons A, Prinsen E, Bauw G, Montagu MV (1997) Antagonistic effects of abscisic acid and jasmonates on salt stress-inducible transcripts in rice roots. Plant Cell 9:2243–2259

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Morgan PW, He CJ, De Greef JA, De Proft MP (1990) Does water deficit stress promote ethylene synthesis by intact plants? Plant Physiol 94:1616–1624

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Moya JL, Primo-Millo E, Talon M (1999) Morphological factors determining salt tolerance in citrus seedling: the shoot-to-root ratio modulates passive root uptake of chloride ions and their accumulation in leaves. Plant Cell Environ 22:1425–1433

    CAS  Article  Google Scholar 

  • Munne-Bosch S, Penuelas J (2003) Photo-and antioxidative protection, and a role for salicylic acid during drought and recovery in field-grown. Phillyrea angustifolia plants. Planta 217:758–766

    CAS  PubMed  Article  Google Scholar 

  • Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681

    CAS  PubMed  Article  Google Scholar 

  • Nakashima K, Ito Y, Yamaguchi-Shinozaki K (2009) Transcriptional regulatory networks in response to abiotic stresses in Arabidopsis and grasses. Plant Physiol 149:88–95

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Nakbanpote W, Panitlurtumpai N, Sangdee A, Sakulpone N, Sirisom P, Pimthong A (2014) Salt-tolerant and plant growth-promoting bacteria isolated from Zn/Cd contaminated soil: identification and effect on rice under saline conditions. J Plant Interact 9:379–387

    CAS  Article  Google Scholar 

  • Narayana I, Lalonde S, Saini HS (1991) Water-stress-induced ethylene production in wheat: a fact or artifact? Plant Physiol 96:406–410

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Nautiyal CS, Srivastava S, Chauhan PS, Seem K, Mishra A, Sopory SK (2013) Plant growth-promoting bacteria Bacillus amyloliquefaciens NBRISN13 modulates gene expression profile of leaf and rhizosphere community in rice during salt stress. Plant Physiol Biochem 66:1–9

    CAS  PubMed  Article  Google Scholar 

  • Nawaz K, Ashraf M (2010) Exogenous application of glycine betaine modulates activities of antioxidants in maize plants subjected to salt stress. J Agron Crop Sci 196:28–37

    CAS  Article  Google Scholar 

  • Nichols SN, Hofmann RW, Williams WM (2015) Physiological drought resistance and accumulation of leaf phenolics in white clover interspecific hybrids. Environ Exp Botany 119:40–47

    CAS  Article  Google Scholar 

  • Nishiyama R, Watanabe Y, Fujita Y, Le DT, Kojima M, Werner T, Vankova R, Yamaguchi-Shinozaki K, Shinozaki K, Kakimoto T (2011) Analysis of cytokinin mutants and regulation of cytokinin metabolic genes reveals important regulatory roles of cytokinins in drought, salt and abscisic acid responses, and abscisic acid biosynthesis. Plant Cell 23:2169–2183

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Nishiyama R, Le DT, Watanabe Y, Matsui A, Tanaka M, Seki M, Yamaguchi-Shinozaki K, Shinozaki K, Tran LS (2012) Transcriptome analyses of a salt-tolerant cytokinin-deficient mutant reveal differential regulation of salt stress response by cytokinin deficiency. PLoS One 7: e32124

  • Noctor G, Foyer CH (1998) Ascorbate and glutathione: keeping active oxygen under control. Ann Rev Plant Physiol Plant Mol Biol 49:249–279

    CAS  Article  Google Scholar 

  • Nonami H, Boyer JS (1990) Primary events regulating stem growth at low water potentials. Plant Physiol 94:1601–1609

    Article  Google Scholar 

  • Nuruzzaman M, Sharoni AM, Kikuchi S (2013) Roles of NAC transcription factors in the regulation of biotic and abiotic stress responses in plants. Front Microbiol 4, art 428:1–16

  • Pandolfi C, Pottosin I, Cuin T, Mancuso S, Shabala S (2010) Specificity of polyamine effects on NaCl-induced ion flux kinetics and salt stress amelioration in plants. Plant Cell Physiol 51(3):422–434

    CAS  PubMed  Article  Google Scholar 

  • Parida AK, Das AB (2005) Salt tolerance and salinity effects on plants: a review. Ecotoxicol Environ Saf 60:324–349

    CAS  PubMed  Article  Google Scholar 

  • Peleg Z, Blumwald E (2011) Hormone balance and abiotic stress tolerance in crop plants. Curr Opin Plant Biol 14:1–6

    Article  CAS  Google Scholar 

  • Petrusa LM, Winicov I (1997) Proline status in salt tolerant and salt sensitive alfalfa cell lines and plants in response to NaCl. Plant Physiol Biochem 35:303–310

    CAS  Google Scholar 

  • Qin S, Zhang Y-J, Yuan B, P-Y X, Xing K, Wang J, Jiang J-H (2014) Isolation of ACC deaminase-producing habitat-adapted symbiotic bacteria associated with halophyte Limonium sinense (Girard) Kuntze and evaluating their plant growth-promoting activity under salt stress. Plant Soil 374:753–766

    CAS  Article  Google Scholar 

  • Qiu Z, Guo J, Zhu A, Zhang L, Zhang M (2014) Exogenous jasmonic acid can enhance tolerance of wheat seedlings to salt stress. Ecotoxicol Environ Saf 104:202–208

    CAS  PubMed  Article  Google Scholar 

  • Ramadoss D, Lakkineni VK, Bose P, Ali S, Annapurna K (2013) Mitigation of salt stress in wheat seedlings by halotolerant bacteria isolated from saline habitats. Springer Plus 2:6

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • Redillas MCFR, Park S-H, Lee JW, Kim YS, Jeong JS, Jung H, Bang SW, Hahn T-R, Kim J-K (2012) Accumulation of trehalose increases soluble sugar contents in rice plants conferring tolerance to drought and salt stress. Plant Biotechnol Rep 6:89–96

    Article  Google Scholar 

  • Reina-Bueno M, Argandoña M, Nieto JJ, Hidalgo-García A, Iglesias-Guerra F, Delgado MJ, Vargas C (2012) Role of trehalose in heat and desiccation tolerance in the soil bacterium Rhizobium etli. BMC Microbiol 12:207

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Rodriguez-Salazar J, Suarez R, Caballero-Mellado J, Iturriaga G (2009) Trehalose accumulation in Azospirillum brasilense improves drought tolerance and biomass in maize plants. FEMS Microbiol Lett 296:52–59

    CAS  PubMed  Article  Google Scholar 

  • Ryu H, Cho Y-C (2015) Plant hormones in salt stress tolerance. J Plant Biol 58:147–155

    CAS  Article  Google Scholar 

  • Sadrnia M, Maksimava N, Khromsova E, Stanislavich S, Owlia P, Arjomandzadegan M (2011) Study of the effect of bacterial 1-aminocyclopropane-1-carboxylte deaminase (ACC) deaminase on resistance to salt stress in tomato plant. Anal Univ Oradea Fas. Biol 18:120–123

    Google Scholar 

  • Saghafi K, Ahmadi J, Asgharzadeh A, Bakhtiari S (2013) The effect of microbial inoculants on physiological responses of two wheat cultivars under salt stress. Int J Adv Biol. Biomed Res 1:421–431

    Google Scholar 

  • Sakuma Y, Maruyama K, Qin F, Osakabe Y, Shinozaki K, Yamaguchi-Shinozaki K (2006a) Dual function of an Arabidopsis transcription factor DREB2A in water-stress-responsive and heat-stress-responsive gene expression. Proc Natl Acad Sci U S A 103:18822–18827

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Sakuma Y, Maruyama K, Osakabe Y, Qin F, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2006b) Functional analysis of an Arabidopsis transcription factor, DREB2A, involved in drought-responsive gene expression. Plant Cell 18:1292–1309

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Sakuraba Y, Kim Y-S, Han S-H, Lee B-D, Paek N-C (2015) The Arabidopsis transcription factor NAC016 promotes drought stress responses by repressing AREB1 transcription through a trifurcate feed-forward regulatory loop involving NAP. Plant Cell 27(6):1771–1787. doi:10.1105/tpc.15.00222; www.plantcell.org/cgi/

  • Salamone IEG, Hynes RK, Nelson LM (2001) Cytokinin production by plant growth promoting rhizobacteria and selected mutants. Can J Microbiol 47:404–411

    Article  Google Scholar 

  • Saleem AR, Bangash N, Mahmood T, Khalid A, Centritto M, Siddique MT (2015) Rhizobacteria capable of producing ACC deaminase promote growth of velvet bean (Mucuna pruriens) under water stress conditions. Int J Agri. Biol 17:663–667

    CAS  Google Scholar 

  • Saravanakumar D, Samiyappan R (2007) ACC deaminase from Pseudomonas fluorescens mediated saline resistance in groundnut (Arachis hypogea) plants. J Appl Microbiol 102:1283–1292

    CAS  PubMed  Article  Google Scholar 

  • Schoenborn L, Yates PS, Grinton BE, Hugenholtz P, Janssen PH (2004) Liquid serial dilution is inferior to solid media for isolation of cultures representative of the phylum-level diversity of soil bacteria. Appl Environ Microbiol 70:4363–4366

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Seki M, Narusaka M, Ishida J, Nanjo T, Fujita M, Oono Y, Kamiya A, Nakajima M, Enju A, Sakurai T, Satou M, Akiyama K, Taji T, Yamaguchi-Shinozaki K, Carninci P, Kawai J, Hayashizaki Y, Shinozaki K (2002) Monitoring the expression profiles of 7000 Arabidopsis genes under drought, cold and high-salinity stresses using a full-length cDNA microarray. Plant J 31:279–292

    CAS  PubMed  Article  Google Scholar 

  • Serraj R, Sinclair TR (2002) Osmolyte accumulation: can it really help increase crop yield under drought conditions? Plant Cell Environ 25:333–341

    PubMed  Article  Google Scholar 

  • Sharma P, Dubey RS (2005) Drought induces oxidative stress and enhances the activities of antioxidant enzymes in growing rice seedlings. Plant Growth Regulat 46:209–221

    CAS  Article  Google Scholar 

  • Sharp RE, Hsiao TC, Silk WK (1988) Growth of the maize primary root at low water potentials. I spatial distribution of expansive growth. Plant Physiol 87:50–57

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Shinozaki K, Yamaguchi-Shinozaki K (1997) Gene expression and signal transduction in water-stress response. Plant Physiol 115:327–334

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Siddikee MA, Glick BR, Chauhan PS, Yim W-J, Sa T (2011) Enhancement of growth and salt tolerance of red pepper seedlings (Capsicum annuum L.) by regulating stress ethylene synthesis with halotolerant bacteria containing ACC deaminase activity. Plant Physiol Biochem 49:427–434

    CAS  PubMed  Article  Google Scholar 

  • Siddikee MA, Sunderem S, Chandrasekaran M, Kim K, Selvakumar G, Sa T (2015) Halotolerant bacteria with ACC deaminase activity alleviate salt stress in canola seed germination. J Korean Soc Appl Biol Chem 58:237–241

    CAS  Article  Google Scholar 

  • Slavikova S, Ufaz S, Avin-Wittenberg T, Levanony H, Galili G (2008) An autophagy-associated Atg8 protein is involved in the responses of Arabidopsis seedlings to hormonal controls and abiotic stresses. J Exp Bot 59:4029–4043

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Spaepen S, Vanderleyden J (2011) Auxin and plant-microbe interactions. Cold spring Harb Persp. Biol 3:#4

    Google Scholar 

  • Suarez R, Wong A, Ramirez M, Barraza A, Orozco MC, Cevallos MA, Lara M, Hernandez G, Iturriaga G (2008) Improvement of drought tolerance and grain yield in common bean by overexpressing trehalose-6-phosphate synthase in rhizobia. Mol Plant-Microbe Interact 21:958–966

    CAS  PubMed  Article  Google Scholar 

  • Suarez C, Cardinale M, Ratering S, Steffens D, Jung S, Montoya AMZ, Geissler-Plaum R, Schnell S (2015) Plant growth-promoting effects of Hartmannibacter diazotrophicus on summer barley (Hordeum vulgare L.) under salt stress. Appl Soil Ecol 95:23–30

    Article  Google Scholar 

  • Sukweenadhi J, Kim Y-J, Choi E-S, Koh S-CLee S-W, Kim Y-J, Yang DC (2015) Paenibacillusyonginensis DCY84T induces changes in Arabidopsis thaliana gene expression against aluminum, drought, and salt stress. Microbiol Res 172:7–15

    CAS  PubMed  Article  Google Scholar 

  • Sun J, Chen S-L, Dai S-X, Wang R-G, Li N-Y, Shen X, Zhou X-Y, C–F L, Zheng X-J, Z-M H, Zhang Z-K, Song J, Xu Y (2009) Ion flux profiles and plant ion homeostasis control under salt stress. Plant Signal Behav 4:261–264

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Takahashi S, Seki M, Ishida J, Satou M, Sakurai T, Narusaka M, Kamiya A, Nakajima M, Enju A, Akiyama K (2004) Monitoring the expression profiles of genes induced by hyperosmotic, high salinity, and oxidative stress and abscisic acid treatment in Arabidopsis cell culture using a full-length cDNA microarray. Plant Mol Biol 56:29–55

    CAS  PubMed  Article  Google Scholar 

  • Tardieu F (2005) Plant tolerance to water deficit: physical limits and possibilities for progress. C R Geosci 337:57–67

    Article  Google Scholar 

  • Tavakkoli E, Rengasamy P, McDonald GK (2010) High concentrations of Na+ and Cl ions in soil solution have simultaneous detrimental effects on growth of fava bean under salinity stress. J Exp Bot 61:4449–4459

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Tewari S, Arora NK (2014) Multifunctional exopolysaccharides from Pseudomonas aeruginosa PF23 involved in plant growth stimulation, biocontrol and stress amelioration in sunflower under saline conditions. Curr Microbiol 69:484–494

    CAS  PubMed  Article  Google Scholar 

  • Timmusk S, Paalme V, Pavlicek T, Bergquist J, Vangala A, Danilas T, Nevo E (2011) Bacterial distribution in the rhizosphere of wild barley under contrasting microclimates. PLoS One 6:e17968

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Timmusk S, Abd El-Daim IA, Copolovici L, Tanilas T, Kännaste A, Behers L, Nevo E, Seisenbaeva G, Stenström E, Niinemets U (2014) Drought-tolerance of wheat improved by rhizosphere bacteria from harsh environments: enhanced biomass production and reduced emissions of stress volatiles. PLoS ONE 9:e96086

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • Tittabutr P, Piromyou P, Longtonglang A, Noisa-Ngiam R, Boonkerd N, Teaumroong N (2013) Alleviation of the effect of environmental stresses using co-inoculation of mungbean by Bradyrhizobium and rhizobacteria containing stress-induced ACC deaminase enzyme. Soil Sci Plant Nutr 59:559–571

    CAS  Article  Google Scholar 

  • Tran LS, Shinozaki K, Yamaguchi-Shinozaki K (2010) Role of cytokinin responsive two-component system in ABA and osmotic stress signaling. Plant Signal Behav 5:148–150

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Türkan I, Demiral T (2009) Recent development in understanding salinity tolerance. Environ Experim. Botany 67:2–9

    Google Scholar 

  • Tuteja N, Mahajan S (2007) Calcium signaling network in plants. An overview. Plant Signaling Behav 2: 79–85

  • Tuteja N, Banu SA, Huda KMK, Gill SS, Jain P, Pham XH, Tuteja R (2014a) A) pea p68, a DEAD-box helicase, provides salinity stress tolerance in transgenic tobacco by reducing oxidative stress and improving photosynthesis machinery. PLoS One 9:e98287. doi:10.1371/journal.pone.0098287

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • Tuteja N, Tarique M, Banu MS, Ahmad M, Tuteja R (2014b) Pisum sativum p68 DEAD-box protein is ATP-dependent RNA helicase and unique bipolar DNA helicase. Plant Mol Biol 85:639–651

    CAS  PubMed  Article  Google Scholar 

  • Ulmasov T, Murfett J, Hagen G, Guilfoyle TJ (1997) Aux/IAA proteins repress expression of reporter genes containing natural and highly active synthetic auxin response elements. Plant Cell 9:1963–1971

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Vacheron J, Desbrosses G, Bouffaud M-L, Touraine B, Moenne-Loccoz Y, Muller D, Legendre L, Wisniewski-Dye F, Prigent-Combaret C (2013) Plant growth-promoting rhizobacteria and root system functioning. Front Plant Sci 4:article 356. doi:10.3389/fpls.2013.00356

    PubMed  Article  Google Scholar 

  • Verslues PE, Agarwal M, Katiyar-Agarwal S, Zhu J, Zhu J-K (2006) Methods and concepts in quantifying resistance to drought, salt and freezing, abiotic stresses that affect plant water status. Plant J 45:523–539

    CAS  PubMed  Article  Google Scholar 

  • Wang Y, Li K, Li X (2009) Auxin redistribution modulates plastic development of root system architecture under salt stress in Arabidopsis thaliana. J Plant Physiol 166:1637–1645

    CAS  PubMed  Article  Google Scholar 

  • Wang Q, Dodd IC, Belimov AA, Jiang F (2016) Rhizosphere bacteria containing 1-aminocyclopropane-1-carboxylate deaminase increase growth and photosynthesis of pea plants under salt stress by limiting Na + accumulation. Function. Plant Biol 43:161–172

    CAS  Google Scholar 

  • Xu J, Li X-L, Luo L (2012) Effects of engineered Sinorhizobium meliloti on cytokinin synthesis and tolerance of alfalfa to extreme drought stress. Appl Environ Microbiol 78:8056–8061

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Yamaguchi-Shinozaki K, Shinozaki K (2006) Transcriptional regulatory networks in cellular responses and tolerance to dehydration and cold stresses. Annu rev. Plant Biol 57:781–803

    CAS  Article  Google Scholar 

  • Yan J, Smith MD, Glick BR, Liang Y (2014) Effects of ACC deaminase-containing rhizobacteria on plant growth and expression of toc GTPases in tomato (Solanum lycopersicum) under salt stress. Botany 92:775–781

    CAS  Article  Google Scholar 

  • Yoshida T, Fujita Y, Sayama H, Kidokoro S, Maruyama K, Mizoi J, Shinozaki K, Yamaguchi-Shinozaki K (2010) AREB1, AREB2, and ABF3 are master transcription factors that cooperatively regulate ABRE-dependent ABA signaling involved in drought stress tolerance and required ABA for full activation. Plant J 61:672–685

    CAS  PubMed  Article  Google Scholar 

  • Yoshida T, Mogami J, Yamaguchi-Sninozaki K (2014) ABA-dependent and ABA-independent signaling in response to osmotic stress in plants. Curr Opin Plant Biol 21:133–139

    CAS  PubMed  Article  Google Scholar 

  • Yue H, Mo W, Li C, Zheng Y, Li H (2007) The salt stress relief and growth promotion effect of Rs-5 on cotton. Plant Soil 297:139–145

    CAS  Article  Google Scholar 

  • Zafar-ul-Hye M, Farooq HM, Zahir ZA, Hussain M, Hussain A (2014) Application of ACC-deaminase containing rhizobacteria with fertilizer improves maize production under drought and salinity stress. Int J Agric Biol 16:591–596

    Google Scholar 

  • Zapata PJ, Serrano MPretel MT, Amoros A, Botella MA (2004) Polyamines and ethylene changes during germination of different plant species under salinity. Plant Sci 167:781–788

    CAS  Article  Google Scholar 

  • Zhao Y, Dong W, Zhang N, Al X, Wang M, Huang Z, Xiao L, Xia G (2014) A wheat allene oxide cyclase gene enhances salinity tolerance via jasmonate signaling. Plant Physiol 164:1068–1076

    CAS  PubMed  Article  Google Scholar 

  • Zhou S, Hu W, Deng X, Ma Z, Chen L, Huang C, Wang C, Wnag J, He Y, Yang G, He G (2012) Overexpression of the wheat aquaporin gene, TaAQP7, enhances drought tolerance in transgenic tobacco. PLOS ONE 7(12):e52439. doi:10.1371/journal.pone.0052439

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Zhu JK (2001) Plant salt tolerance. Trends Plant Sci 6:66–71

    CAS  PubMed  Article  Google Scholar 

  • Zhu JK (2002) Salt and drought stress signal transduction in plants. Annu Rev Plant Physiol Plant Mol Biol 53:247–273

    CAS  Article  Google Scholar 

  • Zhu JK, Liu J, Xiong L (1998) Genetic analysis of salt tolerance in Arabidopsis. Evidence for a critical role of potassium nutrition. Plant Cell 10:1181–1191

    CAS  PubMed  PubMed Central  Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cinzia Forni.

Additional information

Responsible Editor: Ian Dodd.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Forni, C., Duca, D. & Glick, B.R. Mechanisms of plant response to salt and drought stress and their alteration by rhizobacteria. Plant Soil 410, 335–356 (2017). https://doi.org/10.1007/s11104-016-3007-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-016-3007-x

Keywords

  • Drought stress
  • Plant growth-promoting bacteria
  • PGPB
  • Salt stress