Plant and Soil

, Volume 409, Issue 1–2, pp 99–116 | Cite as

Stabilization of new carbon inputs rather than old carbon decomposition determines soil organic carbon shifts following woody or herbaceous vegetation transitions

  • Roxana P. Eclesia
  • Esteban G. Jobbagy
  • Robert B. Jackson
  • Marcos Rizzotto
  • Gervasio Piñeiro
Regular Article

Abstract

Background and aims

Although numerous studies have quantified the effects of land-use changes on soil organic carbon (SOC) stocks, few have examined simultaneously the weight of carbon (C) inputs vs. outputs in shaping these changes. We quantified the relative importance of soil C inputs and outputs in determining SOC changes following the conversion of natural ecosystems to pastures or tree plantations, and evaluated them in light of variations in biomass production, its quality (C:N) and above/belowground allocation patterns.

Methods

We sampled soils up to one-meter depth under native grasslands or forests and compared them to adjacent sites with pastures or plantations to estimate the proportion of new SOC (SOCnew) retained in the soil and the decomposition rates of old SOC (kSOC-old) based on δ13C shifts. We also analyzed these changes in the particulate organic matter fraction (POM) and estimated above and belowground net primary production (ANPP and BNPP) from satellite images, as well as changes in vegetation and soil’s C:N ratios.

Results

The conversion of grasslands to tree plantations decreased total SOC contents while the conversion of forests to pastures increased SOC contents in the topsoil but decreased them in deep layers, maintaining similar soil stocks up to 1 m. Changes in POM were less important and occurred only in the topsoil after cultivating pastures, following SOC changes. Surprisingly, both land-use trajectories showed similar decomposition rates in the topsoil and therefore overall SOC changes were not correlated with C outputs (kSOC-old) but were significantly correlated with C inputs and their stabilization as SOCnew (similar results were obtained for the POM fraction). Pastures although decreased ANPP (as compared to forest) they increased belowground allocation and C:N ratios of their inputs to the soil, probably favoring the retention and stabilization of their new C inputs. In contrast, tree plantations increased ANPP but decreased BNPP (as compared to grasslands) and scarcely accumulated SOCnew probably as a result of the high C retention in standing biomass.

Conclusions

Our results suggest that SOC changes are mainly controlled by the quantity and quality of C inputs and their retention in the soil, rather than by C outputs in these perennial subtropical ecosystems.

Keywords

Soil organic carbon Decomposition rate Roots Lands use change 

References

  1. Alvarez R, Alvarez CR (2000) Soil organic matter pools and their associations with carbon mineralization kinetics. Soil Sci Soc Am J 64(1):184–189CrossRefGoogle Scholar
  2. Amundson R (2001) The carbon budget in soils. Annu Rev Earth Planet Sci 29:535–562CrossRefGoogle Scholar
  3. Amundson R, Baisden W (2001) Stable isotope tracers and mathematical models in soil organic matter studies. In: Sala OE, Jackson RB, Mooney HA, Howarth RW (eds) Methods in ecosystem science. Springer-Verlag, New York, pp. 117–133Google Scholar
  4. Balesdent J, Balabane M (1996) Major contribution of roots to soil carbon storage inferred from maize cultivated soils. Soil Biol Biochem 28(9):1261–1263CrossRefGoogle Scholar
  5. Balesdent J, Mariotti A (1987) Natural 13C abundance as a tracer for studies of soil organic matter dynamics. Soil Biol Biochem 19:25–30CrossRefGoogle Scholar
  6. Balesdent J, Mariotti A (1996) Measurement of soil organic matter turnover using 13C natural abundance. In: Boutton TW, Yamasaki SI (eds) Mass spectrometry of soils Marcel Dekker. USA, New York, pp. 83–111Google Scholar
  7. Balesdent J, Chenub C, Balabane M (2000) Relationship of soil organic matter dynamics to physical protection and tillage. Soil Tillage Res 53(3–4):215–230CrossRefGoogle Scholar
  8. Batlle-Aguilar J, Brovelli A, Porporato A, Barry DA (2011) Modelling soil carbon and nitrogen cycles during land use change. A review. Agron Sustain Dev 31(2):251–274CrossRefGoogle Scholar
  9. Batlle-Bayer L, Batjes NH, Bindraban PS (2010) Changes in organic carbon stocks upon land use conversion in the Brazilian Cerrado: a review. Agric Ecosyst Environ 137(1–2):47–58CrossRefGoogle Scholar
  10. Bernoux M, Cerri CC, Neill C, de Moraes JFL (1998) The use of stable carbon isotopes for estimating soil oranic matter turnover rates. Geoderma 82:43–58CrossRefGoogle Scholar
  11. Berthrong ST, PIneiro G, Jobbágy EG, Jackson RB (2012) Soil C and N changes with afforestation of grasslands across gradients of precipitation and plantation age. Ecol Appl 22(1):76–86CrossRefPubMedGoogle Scholar
  12. Bird JA, Torn MS (2006) Fine roots vs. needles: a comparison of 13C and 15N dynamics in a ponderosa pine forest soil. Biogeochemistry 79(3):361–382CrossRefGoogle Scholar
  13. Bird JA, Kleber M, Torn MS (2008) 13C and 15N stabilization dynamics in soil organic matter fractions during needle and fine root decomposition. Org Geochem 39(4):465–477CrossRefGoogle Scholar
  14. Boddey RM, Macedo R, Tarré RM, Ferreira E, De Oliveira OC, Rezende CDP, Cantarutti RB, Pereira JM, Alves BJR, Urquiaga S (2004) Nitrogen cycling in Brachiaria pastures: the key to understanding the process of pasture decline. Agric Ecosyst Environ 103:389–403CrossRefGoogle Scholar
  15. Bolinder M, Janzen H, Gregorich E, Angers D, VandenBygaart A (2007) An approach for estimating net primary productivity and annual carbon inputs to soil for common agricultural crops in Canada. Agric Ecosyst Environ 118(1):29–42CrossRefGoogle Scholar
  16. Cambardella CA, Elliott ET (1992) Particulate soil organic-matter changes across a grassland cultivation sequence. Soil Sci Soc Am J 56(3):777–783CrossRefGoogle Scholar
  17. Carnevali R (1994) Comunidades del distrito de los campos y del subdistrito de la planicie sedimentaria del éste. In: Fitogeografía de la provincia de Corrientes. Gobierno de la provincia de Corrientes - INTA, Corrientes, p 324Google Scholar
  18. Cerri CC, Volkoff B, Andreaux F (1991) Nature and behaviour of organic matter in soils under natural forest, and after deforestation, burning and cultivation, near Manaus. For Ecol Manag 38(3–4):247–257CrossRefGoogle Scholar
  19. Chapin FS, Matson PA, Mooney HA (2002) Principles of terrestrial ecosystem ecology. Springer, New YorkGoogle Scholar
  20. Chen CR, Xu ZH, Mathers NJ (2004) Soil carbon pools in adjacent natural and plantation forests of subtropical Australia. Soil Sci Soc Am J 68(1):282–291CrossRefGoogle Scholar
  21. Chonè T, Andreux F, Correa JC, Volkoff B, Cerri CC (1991) Changes in organic matter in an Oxisol from the Central Amazonian forest during eight years as pasture determined by 13C isotopic composition. Elsevier, Amsterdam, pp. 397–405Google Scholar
  22. Christensen BT (1996) Matching measurable soil organic matter fractions with conceptual pools in simulation models of carbon turnover: revision of model structure. In: Powlson DS, Smith, P., Smith, J.U. (eds.) In: Evaluation of soil organic matter models. Berlin, Springer :143–159Google Scholar
  23. Clark DA, Brown S, Kicklighter DW, Chambers JQ, Thomlinson JR, Ni J, Holland EA (2001) Net primary production in tropical forests: an evaluation and synthesis of existing field data. Ecol Appl 11(2):371–384CrossRefGoogle Scholar
  24. Cotrufo MF, Wallenstein MD, Boot CM, Denef K, Paul E (2013) The microbial efficiency-matrix stabilization (MEMS) framework integrates plant litter decomposition with soil organic matter stabilization: do labile plant inputs form stable soil organic matter? Glob Chang Biol 19(4):988–995CrossRefPubMedGoogle Scholar
  25. Cuevas E, Brown S, Lugo A (1991) Above- and belowground organic matter storage and production in a tropical pine plantation and a paired broadleaf secondary forest. Plant Soil 135(2):257–268CrossRefGoogle Scholar
  26. Dalal RC, Mayer RJ (1986) Long term trends in fertility of soils under continuous cultivation and cereal cropping in southern Queensland. II. Total organic carbon and its rate of loss from the soil profile. Aust J Soil Res 24(2):281–292CrossRefGoogle Scholar
  27. Davidson E, Ackerman I (1993) Changes in soil carbon inventories following cultivation of previously untilled soils. Biogeochemistry 20:161–193Google Scholar
  28. Davidson EA, Ivan A. Janssens (2006) Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature 408: 165–173.CrossRefGoogle Scholar
  29. Desjardins T, Barros E, Sarrazin M, Girardin C, Mariotti A (2004) Effects of forest conversion to pasture on soil carbon content and dynamics in Brazilian Amazonia. Agric Ecosyst Environ 103:365–373CrossRefGoogle Scholar
  30. Dungait JAJ, Hopkins DW, Gregory AS, Whitmore AP (2012) Soil organic matter turnover is governed by accessibility not recalcitrance. Glob Chang Biol 18(6):1781–1796CrossRefGoogle Scholar
  31. Eclesia RP, Jobbagy EG, Jackson RB, Biganzoli F, Piñeiro G (2012) Shifts in soil organic carbon for plantation and pasture establishment in native forests and grasslands of South America. Glob Chang Biol 18(10):3237–3251CrossRefGoogle Scholar
  32. Epron D, Marsden C, M’Bou AT, Saint-André L, d’Annunzio R, Nouvellon Y (2009) Soil carbon dynamics following afforestation of a tropical savannah with eucalyptus in Congo. Plant Soil 323(1–2):309–322CrossRefGoogle Scholar
  33. Epstein HE, Burke IC, Lauenroth WK (2002) Regional patterns of decomposition and primary production rates in the U.S. great plains. Ecology 83(2):320–327Google Scholar
  34. Erize FE, Dimitri MJ, Julio Leonardis RF, Biloni JS, Babarskas M, Gómez D, Haene E, Monteleone A, Ostrosky C (1997) Especies Forestales de la Argentina Oriental. In: El Nuevo libro del arbol, Tomo II. Buenos Aires, p 124Google Scholar
  35. Fisher MJ, Thomas RJ, Rao IM (1997) Management of tropical pastures in acid soil savannas of South America for carbon sequestration in the soil. In: Lal R, Kimble JM, Follet RF, Stewart BA (eds) Management of carbon sequestration in soil. CPC Press, Boca Raton, pp. 405–420Google Scholar
  36. Fontaine S, Mariotti A, Abbadie L (2003) The priming effect of organic matter: a question of microbial competition? Soil Biol Biochem 35(6):837–843CrossRefGoogle Scholar
  37. Freier KP, Glaser B, Zech W (2010) Mathematical modeling of soil carbon turnover in natural Podocarpus forest and eucalyptus plantation in Ethiopia using compound specific δ 13C analysis. Glob Chang Biol 16(5):1487–1502CrossRefGoogle Scholar
  38. Giardina CP, Ryan MG (2000) reply: Soil warming and organic carbon content. Nature 408:790CrossRefGoogle Scholar
  39. Golchin A, Oades JM, Skjemstad JO, Clarke P (1994a) Study of free and occluded particulate organic matter in soils by solid state 13 C CP/MAS NMR spectroscopy and scanning electron microscopy. Aust J Soil Res 32:285–309CrossRefGoogle Scholar
  40. Golchin A, Oades JM, Skjemstad JO, Clarke P (1994b) Soil structure and carbon cycling. Aust J Soil Res 32:1043–1068CrossRefGoogle Scholar
  41. Gomez IA, Gallopin GC (1991) Relationship between net primary productivity of terrestrial ecosystems around the world and some environmental factors. Estimacion de la productividad primaria neta de ecosistemas terrestres del mundo en relacion a factores ambientales 1(1): 24–40Google Scholar
  42. Grace J, San José J, Meir P, Miranda HS, Montes RA (2006) Productivity and carbon fluxes of tropical savannas. J Biogeogr 33:387–400CrossRefGoogle Scholar
  43. Guo L, Wang M, Gifford R (2007) The change of soil carbon stocks and fine root dynamics after land use change from a native pasture to a pine plantation. Plant Soil 299(1):251–262CrossRefGoogle Scholar
  44. Guo LB, Cowie AL, Montagu KD, Gifford RM (2008) Carbon and nitrogen stocks in a native pasture and an adjacent 16-year-old Pinus radiata D. Don. plantation in Australia. Agric Ecosyst Environ 124(3–4):205–208CrossRefGoogle Scholar
  45. Guo LB, Gifford RM (2002) Soil carbon stocks and land use change: a meta analysis. Glob Chang Biol 8(4):345–360CrossRefGoogle Scholar
  46. Henderson GS (1995) Soil organic matter: a link between forest management and productivity. In: Bigham JM, Bartels JM (eds) Carbon forms and functions in forests soils. Soil Science Society of America Inc., Madison, pp. 419–435Google Scholar
  47. Hopkins FM, Torn MS, Trumbore SE (2012) Warming accelerates decomposition of decades-old carbon in forest soils. Proc Natl Acad Sci 109(26):E1753–E1761CrossRefPubMedPubMedCentralGoogle Scholar
  48. Hui D, Jackson RB (2006) Geographic and interannual variability in biomass partitioning in grassland ecosystems: a synthesis of field data. New Phytol 169:85–93CrossRefPubMedGoogle Scholar
  49. Iqbal J, Hu R, Lin S, Ahamadou B, Feng M (2009) Carbon dioxide emissions from Ultisol under different land uses in mid-subtropical China. Geoderma 152(1–2):63–73CrossRefGoogle Scholar
  50. Ito A, Oikawa T (2004) Global mapping of terrestrial primary productivity and light-use efficiency with a process-based model. In: Global environmental change in the ocean and on land. TERRAPUB, Tokyo, pp. 343–358Google Scholar
  51. Jackson RB, Banner JL, Jobbágy EG, Pockman WT, Wall DH (2002) Ecosystem carbon loss with woody plant invasion of grasslands. Nature 418:623–626CrossRefPubMedGoogle Scholar
  52. Jenkinson DS, Meredith J, Kinyamario JI, Warren GP, Wong MTF, Harkness DD, Bol R, Coleman K (1999) Estimating net primary production from measurements made on soil organic matter. Ecology 80(8):2762–2773Google Scholar
  53. Kemmitt SJ, Lanyon CV, Waite IS, Wen Q, Addiscott TM, Bird NRA, O’Donnell AG, Brookes PC (2008) Mineralization of native soil organic matter is not regulated by the size, activity or composition of the soil microbial biomass—a new perspective. Soil Biol Biochem 40(1):61–73CrossRefGoogle Scholar
  54. Kong AYY, Six J, Bryant DC, Denison RF, Van Kessel C (2005) The relationship between carbon input, aggregation, and soil organic carbon stabilization in sustainable cropping systems. Soil Sci Soc Am J 69:1078–1085CrossRefGoogle Scholar
  55. Koutika LS, Bartoli F, Andreux F, Cerri CC, Burtin G, Choné T, Philippy R (1997) Organic matter dynamics and aggregation in soils under rain forest and pastures of increasing age in the eastern Amazon Basin. Geoderma 76(1–2):87–112CrossRefGoogle Scholar
  56. Kuzyakov Y (2010) Priming effects: interactions between living and dead organic matter. Soil Biol Biochem 42(9):1363–1371CrossRefGoogle Scholar
  57. Lal R (2004) Soil carbon sequestration impacts on global climate change and food security. Science 304(5677):1623–1627CrossRefPubMedGoogle Scholar
  58. Lauenroth WK, Gill R (2003) Turnover of root systems. In: Root ecology. Springer, Berlin Heidelberg, pp 61–89Google Scholar
  59. Liao C, Luo Y, Fang C, Li B (2010) Ecosystem carbon stock influenced by plantation practice: implications for planting forests as a measure of climate change mitigation. PLoS One 5(5):e10867CrossRefPubMedPubMedCentralGoogle Scholar
  60. Ligier HD, Matteio HR, Polo HL, Rosso JR (1988) Mapa de suelos de la provincia de Misiones In: INTA (ed) Atlas de suelos de la República Argentina. Buenos Aires, pp 107–154Google Scholar
  61. Lisboa C, Conant R, Haddix M, Cerri C, Cerri C (2009) Soil carbon turnover measurement by physical fractionation at a forest-to-pasture chronosequence in the Brazilian Amazon. Ecosystems 12(7):1212–1221CrossRefGoogle Scholar
  62. Litton CM, Raich JSW, Ryan MLG (2007) Carbon allocation in forest ecosystems. Glob Chang Biol 13:2089–2109CrossRefGoogle Scholar
  63. Malhi Y, Aragão LE, Metcalfe DB, Paiva R, Quesada CA, Almeida S, Anderson L, Brando P, Chambers JQ, Da Costa ACL, Hutyra LR, Oliveira P, Patiño S, Pyle EH, Robertson AL, Teixeira LM (2009) Comprehensive assessment of carbon productivity, allocation and storage in three Amazonian forests. Glob Chang Biol 15(5):1255–1274CrossRefGoogle Scholar
  64. Mazzilli SR, Kemanian AR, Ernst OR, Jackson RB, Piñeiro G (2014) Priming of soil organic carbon decomposition induced by corn compared to soybean crops. Soil Biol Biochem 75:273–281CrossRefGoogle Scholar
  65. Mazzilli SR, Kemanian AR, Ernst OR, Jackson RB, Piñeiro G (2015) Greater humification of belowground than aboveground biomass carbon into particulate soil organic matter in no-till corn and soybean crops. Soil Biol Biochem 85:22–30CrossRefGoogle Scholar
  66. McCree KJ (1972) Test of current definitions of photosynthetically active radiation against leaf photosynthesis data. Agric Meteorol 10:443–453CrossRefGoogle Scholar
  67. Monteith JL (1972) Solar radiation and productivity in tropical ecosystems. J Appl Ecol 9:747–766Google Scholar
  68. Mosquera O, Buurman P, Ramirez BL, Amezquita MC (2012) Carbon stocks and dynamics under improved tropical pasture and silvopastoral systems in Colombian Amazonia. Geoderma 189–190:81–86CrossRefGoogle Scholar
  69. Neill C, Melillo JM, Steudler PA, Cerri CC, de Moraes JF, Piccolo MC, Brito M (1997) Soil carbon and nitrogen stocks following forest clearing for pasture in the southwestern Brazilian Amazon. Ecol Appl 7(4):1216–1225CrossRefGoogle Scholar
  70. Parodi RL (1964) Las regiones fitogeográficas argentinas. In: Enciclopedia Argentina de Agricultura y Ganadería. Buenos Aires, p 14Google Scholar
  71. Paruelo JM, Piñeiro G, Baldi G, Baeza S, Lezama F, Altesor A, Oesterheld M (2010) Carbon stocks and fluxes in rangelands of the Río de la Plata Basin. Rangel Ecol Manag 63(1):94–108CrossRefGoogle Scholar
  72. Paul EA, Harris D, Collins HP, Schulthess U, Robertson GP (1999) Evolution of CO2 and soil carbon dynamics in biologically managed, row-crop agroecosystems. Appl Soil Ecol 11(1):53–65CrossRefGoogle Scholar
  73. Paul S, Flessa H, Veldkamp E, López-Ulloa M (2008) Stabilization of recent soil carbon in the humid tropics following land use changes: evidence from aggregate fractionation and stable isotope analyses. Biogeochemistry 87(3):247–263CrossRefGoogle Scholar
  74. Pérez CA, Goya JF, Bianchini F, Frangi JL, Fernandez R (2006) Productividad aérea y ciclo de nutrientes en plantaciones de Pinus taeda L. en el norte de la provincia de Misiones, Argentina. Interciencia 31(11):794–801Google Scholar
  75. Piñeiro G, Oesterheld M, Paruelo JM (2006) Seasonal variation of aboveground production and radiation use efficiency of temperate rangelands estimated through remote sensing. Ecosystems 9:1–19CrossRefGoogle Scholar
  76. Piñeiro G, Paruelo JM, Jobbágy EG, Jackson RB, Oesterheld M (2009) Grazing effects on belowground C and N stocks along a network of cattle exclosures in temperate and subtropical grasslands of South America. Glob Biogeochem Cycles 23(2)Google Scholar
  77. Post WM, Kwon KC (2000) Soil carbon sequestration and land use change: processes and potential. Glob Chang Biol 6(3):317–327CrossRefGoogle Scholar
  78. Post WM, Mann L (1990) Changes in soil organic carbon and nitrogen as a result of cultivation. In: Soils and the Greenhouse Effect (ed Bouw- man AF). JohnWiley & Sons, New York, pp 401-406Google Scholar
  79. Powers JS, Veldkamp E (2005) Regional variation in soil carbon and δ13C in forests and pastures of northeastern Costa Rica. Biogeochemistry 72:315–336CrossRefGoogle Scholar
  80. Raich JW, Tufekcioglu A (2000) Vegetation and soil respiration: correlations and controls. Biogeochemistry 48:71–90CrossRefGoogle Scholar
  81. Rasmussen PE, Parton WJ (1994) Long-term effects of residue Management in wheat-fallow: I. Inputs, yield, and soil organic matter. Soil Sci Soc Am J 58(2):523–530CrossRefGoogle Scholar
  82. Rezende CP, Cantarutti RB, Braga JM, Gomide JA, Pereira JM, Ferreira E, Tarré R, Macedo R, Alves BJR, Urquiaga S, Cadisch G, Giller KE, Boddey RM (1999) Litter deposition and disappearance in Brachiaria pastures in the Atlantic forest region of the south of Bahia, Brazil. Nutr Cycl Agroecosyst 54(2):99–112CrossRefGoogle Scholar
  83. Richards AE, Dalal RC, Schmidt S (2007) Soil carbon turnover and sequestration in native subtropical tree plantations. Soil Biol Biochem 39(8):2078–2090CrossRefGoogle Scholar
  84. Ruimy A, Saugier B, Dedieu G (1994) Methodology for the estimation of terrestrial net primary production from remotely sensed data. J Geophys Res 99:5263–5283CrossRefGoogle Scholar
  85. Ryan MG, Binkley D, Fownes JH, Giardina CP, Senock RS (2004) An experimental test of the causes of forest growth decline with stand age. Ecol Monogr 74(3):393–414CrossRefGoogle Scholar
  86. Schimel JP, Schaeffer SM (2012) Microbial control over carbon cycling in soil. Front Microbiol 3:348CrossRefPubMedPubMedCentralGoogle Scholar
  87. Six J, Elliott ET, Paustian K (1999) Aggregate and soil organic matter dynamics under conventional and no-tillage systems. Soil Sci Soc Am J 63(5):1350–1358CrossRefGoogle Scholar
  88. Solomon D, Fritzsche F, Lehmann J, Tekalign M, Zech W (2002) Soil organic matter dynamics in the Subhumid Agroecosystems of the Ethiopian highlands: evidence from natural 13C abundance and particle-size fractionation. In 3:969–978Google Scholar
  89. Sollins P, Glassman C, Paul E, Swanston C, Lajtha K, Heil JW, Elliot ET (1999) Soil carbon and nitrogen pools and fractions. In: Robertson GP, Coleman DC, Bledsoe CS, Sollins P (eds) Standard soil methods for long-term ecological Reaserch. Oxford University Press, New York, p 437Google Scholar
  90. Song B, Niu S, Zhang Z, Yang H, Li L, Wan S (2012) Light and heavy fractions of soil organic matter in response to climate warming and increased precipitation in a temperate steppe. PLoS One 7(3):e33217CrossRefPubMedPubMedCentralGoogle Scholar
  91. Soriano A, León RJC, Sala OE, Lavado RS, Deregibus VA, Cauhépé MA, Scaglia OA, Velázquez CA, Lemcoff JH (1992) Río de la Plata grasslands. In: Coupland RT (ed) Ecosystems of the world 8A. Natural grasslands. Introduction and western hemisphere. Elsevier, New York, pp. 367–407Google Scholar
  92. Sundaravalli M, Paliwal K (2000) Primary production and soil carbon dioxide emission in the semi-arid grazing lands of Madurai, India. Trop Grassl 34:14–20Google Scholar
  93. Trumbore S, Costa ESD, Nepstad DC, Camargo PBD, Martinelli LA, Ray D, Restom T, Silver W (2006) Dynamics of fine root carbon in Amazonian tropical ecosystems and the contribution of roots to soil respiration. Glob Chang Biol 12(2):217–229CrossRefGoogle Scholar
  94. Trumbore SE (1997) Potential responses of soil organic carbon to global environmental change. Proc Natl Acad Sci U S A 94:8284–8291CrossRefPubMedPubMedCentralGoogle Scholar
  95. Turner DP, Ritts WD, Cohen WB, Gower ST, Running SW, Zhao M, Costa MH, Kirschbaum AA, Ham JM, Saleska SR, Ahl DE (2006) Evaluation of MODIS NPP and GPP products across multiple biomes. Remote Sens Environ 102(3–4):282–292CrossRefGoogle Scholar
  96. Wattel-Koekkoek EJW, Buurman P, van der Plicht J, Wattel E, van Breemen N (2003) Mean residence time of soil organic matter associated with kaolinite and smectite. Eur J Soil Sci 54(2):269–278CrossRefGoogle Scholar
  97. Yadvinder M, A LEOC, Daniel BM, Romilda P, Carlos AQ, Samuel A, Liana A, Paulo B, Jeffrey QC, da Costa ACL, Lucy R H, Paulo O, Sandra P, Elizabeth H P, Amanda L R, Liliane M T (2009) Comprehensive assessment of carbon productivity, allocation and storage in three Amazonian forests. Glob Chang Biol 15(5):1255–1274CrossRefGoogle Scholar
  98. Zhou T, Luo Y (2008) Spatial patterns of ecosystem carbon residence time and NPP-driven carbon uptake in the conterminous United States. Glob Biogeochem Cycles 22(3)Google Scholar
  99. Zinn YL, Lal R, Bigham JM, Resck DVS (2007) Edaphic controls on soil organic carbon retention in the Brazilian Cerrado: texture and mineralogy. Soil Sci Soc Am J 71(4):1204–1214CrossRefGoogle Scholar
  100. Zinn YL, Resck DVS, da Silva JE (2002) Soil organic carbon as affected by forestation with eucalyptus and Pinus in the Cerrado region of Brazil. For Ecol Manag 166:285–294CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Roxana P. Eclesia
    • 1
  • Esteban G. Jobbagy
    • 2
  • Robert B. Jackson
    • 3
  • Marcos Rizzotto
    • 2
  • Gervasio Piñeiro
    • 4
    • 5
  1. 1.Estación Experimental Agropecuaria INTA ParanáParanáArgentina
  2. 2.Grupo de Estudios Ambientales, IMASLUniversidad Nacional de San Luis, CONICETSan LuisArgentina
  3. 3.School of Earth Sciences, Woods Institute for the Environment and Precourt Institute for EnergyStanford UniversityStanfordUSA
  4. 4.IFEVA/Facultad de AgronomíaUniversidad de Buenos Aires/CONICETBuenos AiresArgentina
  5. 5.Departamento de Sistemas Ambientales, Facultad de AgronomíaUniversidad de la RepúblicaMontevideoUruguay

Personalised recommendations