Skip to main content
Log in

Fungal endophyte association with Brachiaria grasses and its influence on plant water status, total non-structural carbohydrates and biomass production under drought stress

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Aims

The main aim was to evaluate the effect of endophytic association of Sarocladium implicatum on drought responses of Brachiaria grass cultivars under greenhouse conditions. We tested the hypothesis that endophyte association with Brachiaria improves tolerance to drought stress by maintaining plant water status and increasing dry matter content (DMC), total non-structural carbohydrate (NSC) contents and biomass.

Methods

Five Brachiaria cultivars were grown in a greenhouse for 54 days, with (E+) and without (E-) endophyte under well-watered (WW) and drought-stressed (DS) conditions. Plant water status (measured as relative water content of leaf, RWC), leaf DMC, NSC contents and biomass were determined.

Results

Endophyte association significantly increased leaf RWC but reduced DMC and biomass under DS. Endophyte reduced NSC contents under WW condition in one cultivar and reduced shoot, root and total biomass in another cultivar under DS. Effects of endophyte on response variables depended on cultivar and water regime, with significant interactions of these factors.

Conclusions

Our results support the hypothesis that endophyte association improves plant water status by increasing RWC under DS. However, endophyte-induced reduction in plant attributes like DMC, NSC and biomass presents metabolic costs to host plants which could negatively affect forage quality and yield.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ahlholm JU, Helander M, Lehtimäki S, Wäli P, Saikkonen K (2002) Vertically transmitted fungal endophytes: different responses of host-parasite systems to environmental conditions. Oikos 99(1):173–183

    Article  Google Scholar 

  • Assuero SG, Tognetti JA, Colabelli MR, Agnusdei MG, Petroni EC, Posse MA (2006) Endophyte infection accelerates morpho-physiological responses to water deficit in tall fescue. N Z J Agric Res 49(4):359–370

    Article  Google Scholar 

  • Cardoso JA, Rincón J, Jiménez JLC, Noguera D, Rao IM (2013) Morpho-anatomical adaptations to waterlogging by germplasm accessions in a tropical forage grass. AoB PLANTS 5:plt047. doi:10.1093/aobpla/plt047

    Article  PubMed Central  Google Scholar 

  • Cardoso JA, Jiménez JLC, Rao IM (2014) Waterlogging-induced changes in root architecture of germplasm accessions of the tropical forage grass Brachiaria humidicola. AoB PLANTS 6:plu017. doi:10.1093/aobpla/plu017

    Article  PubMed  PubMed Central  Google Scholar 

  • Cheplick GP (2004) Recovery from drought stress in Lolium perenne (Poaceae): are fungal endophytes detrimental? Am J Bot 91(12):1960–1968

    Article  PubMed  Google Scholar 

  • Cheplick GP (2007) Costs of fungal endophyte infection in Lolium perenne genotypes from Eurasia and North Africa under extreme resource limitation. Environ Exp Bot 60:202–210

    Article  Google Scholar 

  • Cheplick GP (2008) Host genotype overrides fungal endophyte infection in influencing tiller and spike production of Lolium perenne (Poaceae) in a common garden experiment. Am J Bot 95:1063–1071

    Article  PubMed  Google Scholar 

  • Cheplick GP, Cho R (2003) Interactive effects of fungal endophyte infection and host genotype on growth and storage in Lolium perenne. New Phytol 158:183–191

    Article  Google Scholar 

  • Cheplick GP, Faeth SH (2009) Ecology and evolution of the grass-endophyte Symbiosis. Oxford University Press, New York

  • Díaz S, Hodgson JH, Thompson K, Cabido M, Cornelissen JHC, Jalili A, et al. (2004) The plant traits that drive ecosystems: evidence from three continents. J Veg Sci 15(3):295–304

    Article  Google Scholar 

  • Dongyi H, Kelemu S (2004) Acremonium implicatum, a seed-transmitted endophytic fungus in Brachiaria grasses. Plant Dis 88:1252–1254

    Article  CAS  Google Scholar 

  • Downing T, Gamroth M (2007) Nonstructural Carbohydrates in Cool-season grasses. Special Report 1079-E. November 2007. Oregon State University Extension Service.

  • Dupont P, Eaton CJ, Wargent JJ, Fechtner S, Solomon P, Schmid J, Day RC, Scott B, Cox MP (2015) Fungal endophyte infection of ryegrass reprograms host metabolism and alters development. New Phytol 208(4):1227–1240. doi:10.1111/nph.13614

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garcia MG, Busso CA, Polci P, Garcia GNL, Echenique V (2002) Water relations and leaf growth rate of three Agropyron genotypes under water stress. Biocell 26:309–317

    PubMed  Google Scholar 

  • Garnier E, Shipley B, Roumet C, Laurent G (2001) A standardized protocol for the determination of specific leaf area and leaf dry matter content. Funct Ecol 15:688–695

    Article  Google Scholar 

  • Giraldo A, Gené J, Sutton DA, Madrid H, de Hoog GS, Cano J, Decock C, Crous PW, Guarro J (2015) Phylogeny of Sarocladium (Hypocreales). Persoonia 34:10–24. doi:10.3767/003158515X685364

    Article  CAS  PubMed  Google Scholar 

  • Guenni O, Marín D, Baruch Z (2002) Responses to drought of five Brachiaria species. I. Biomass production, leaf growth, root distribution, water use and forage quality. Plant Soil 243:229–241

    Article  CAS  Google Scholar 

  • Gunasekera D, Berkowitz GA (1992) Evaluation of contrasting cellular-level acclimation responses to leaf water deficits in three wheat genotypes. Plant Sci 86(1):1–12

    Article  Google Scholar 

  • Hesse U, Schöberlein W, Wittenmayer L, et al. (2003) Effects of Neotyphodium endophytes on growth, reproduction and drought-stress tolerance of three Lolium perenne genotypes. Grass Forage Sci 58:407–415

    Article  Google Scholar 

  • Hill NS, Pachon JG, Bacon CW (1996) Acremonium coenophialum-mediated short- and long-term drought acclimation in tall fescue. Crop Sci 36:665–672

    Article  Google Scholar 

  • Jolly MW, Hadlow AM, Huguet K (2014) De-coupling seasonal changes in water content and dry matter to predict live conifer foliar moisture content. Int J Wildland Fire 23:480–489

    Article  Google Scholar 

  • Jongebloed U, Szederkenyi J, Hartig K, Schobert C, Komor E (2004) Sequence of morphological and physiological events during natural ageing and senescence of a castor bean leaf: sieve tube occlusion and carbohydrate back-up precede chlorophyll degradation. Physiol Plant 120:338–346

    Article  CAS  PubMed  Google Scholar 

  • Kang JH, Brink GE (1995) White clover morphology and physiology in response to defoliation interval. Crop Sci 35:264–269

    Article  Google Scholar 

  • Kannadan S, Rudgers JA (2008) Endophyte symbiosis benefits a rare grass under low water availability. Funct Ecol 22:706–713

    Article  Google Scholar 

  • Kelemu S, Takayama Y (1998) An endophytic fungus in the tropical forage grass Brachiaria brizantha: effect on a leaf spot disease. Phytopathology 88:Abstr S46

    Google Scholar 

  • Kelemu S, White JF, Muñoz F, Takayama Y (2001) An endophyte of the tropical forage grass Brachiaria brizantha: isolating, identifying, and characterizing the fungus and determining its antimycotic properties. Can Microbiol 47:55–62

    Article  CAS  Google Scholar 

  • Kelemu S, Fory P, Zuleta C, Ricaurte J, Rao IM, Lascano C (2011) Detecting bacterial endophytes in tropical grasses of the Brachiaria genus and determining their role in improving plant growth. Afr J Biotechnol 10(6):965–976

    Google Scholar 

  • Lamabam PS, Sarvajeet SG, Narendra T (2011) Unraveling the role of fungal symbionts in plant abiotic stress tolerance. Plant Signal Behav 6(2):175–191

    Article  Google Scholar 

  • Leuchtmann A, Bacon CW, Schardl CL, White JF Jr, Tadych M (2014) Nomenclatural realignment of Neotyphodium species with genus Epichloё. Mycologia 106(2):202–215. doi:10.3852/106.2.202

    Article  CAS  PubMed  Google Scholar 

  • Loch DS, Miles JW (2004) Brachiaria hybrid (Brachiaria ruziziensis x Brachiaria decumbens x Brachiaria bizantha): 'Mulato II'. Plant Varieties Journal 17(3):145–151

    Google Scholar 

  • Loch DS, Hare MD, Miles JW (2011) Brachiaria hybrid (Brachiaria ruziziensis x decumbens x brizantha), ‘CIAT BR02/0465’. Plant Varieties Journal 24(1):154–160

    Google Scholar 

  • Malinowski DP, Belesky DP (2000) Adaptations of endophyte-infected cool-season grasses to environmental stresses: mechanisms of drought and mineral stress tolerance. Crop Sci 40:923–940

    Article  CAS  Google Scholar 

  • Malinowski DP, Alloush GA, Belesky DP (1998) Evidence for chemical changes on the root surface of tall fescue in response to infection with the fungal endophyte Neotyphodium coenophialum. Plant Soil 205:1–12

    Article  CAS  Google Scholar 

  • Matin MA, Brown JH, Fergusion H (1989) Leaf water potential, relative water content and diffusive resistance as screening techniques for drought resistance in barley. Agron J 81:100–105

    Article  Google Scholar 

  • Miller LA, Moorby JM, Davies DR, Humphreys MO, Scollan ND, MacRae JC, Theodorou MK (2001) Increased concentration of water-soluble carbohydrates in perennial ryegrass (Lollium perenne L.): milk production from late-lactation dairy cows. Grass and Forage Sci 56:383–394

  • Moorby JM, Evans RT, Scollan ND, MacRae JC, Theodorou MK (2006) Increased concentration of water-soluble carbohydrate in perennial ryegrass (Lolium perenne L.): evaluation in dairy cows in early lactation. Grass Forage Sci 61:52–59

  • Morse LJ, Day TA, Faeth SH (2002) Effect of Neotyphodium endophyte infection on growth and leaf gas exchange of Arizona fescue under contrasting water availability regimes. Environ Exp Bot 48:257–268

    Article  Google Scholar 

  • Nagabhyru P, Dinkins R, Wood C, Bacon C, Schardl C (2013) Tall fescue endophyte effects on tolerance to water-deficit stress. BMC Plant Biol 13:127

    Article  PubMed  PubMed Central  Google Scholar 

  • Pang PC, Paul EA (1980) Effects of vesicular-arbuscular mycorrhizae on 14C and 15N distribution in nodulated faba beans. Can J Soil Sci 60:241–250

    Article  CAS  Google Scholar 

  • Poorter H (1989) Interspecific variation in relative growth rate: on ecological causes and physiological consequences. In: Lambers H (ed) Causes and consequences of variation in growth rate and productivity of higher plants. SPB Academic Publishing, The Hague, pp. 45–68

    Google Scholar 

  • Purbajanti ED, Anwar S, Wydiati KF (2012) Drought stress effect on morphology characters, water use efficiency, growth and yield of Guinea and Napier grasses. Int Res J Plant Sci 3(4):47–53

    Google Scholar 

  • Rao IM, Roca WM, Avarza MA, Tabares E, Garcia R (1992) Somaclonal variation in plant adaptation to acid soil in the tropical forage legume Stylosanthes guianensis. Plant Soil 146(1–2):21–30

    Article  CAS  Google Scholar 

  • Rasmussen S, Parsons AJ, Fraser K, Xue H, Newman JA (2008) Metabolic profiles of Lolium perenne are differentially affected by nitrogen supply, carbohydrate content, and fungal endophyte infection. Plant Physiol 146:1440–1453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ren A, Gao Y, Wang W, Wang J (2006) Photosynthetic pigments and photosynthetic products of endophyte-infected and endophyte-free Lolium perenne L. Under drought stress conditions. Front Biol China 1(2):168–173

  • Ruiz-Lozano JM, Azcon R, Gomez M (1995) Effects of Arbuscular-Mycorrhizal Glomus species on drought tolerance: Physiological and nutritional plant responses. Appl Environ Microbiol 61(2):456–460

    CAS  PubMed  PubMed Central  Google Scholar 

  • Saikkonen KJ, Ahlholm M, Helander M, Lehtimaki S, Niemelainen O (2000) Endophytic fungi in wild and cultivated grasses in Finland. Ecography 23:360–366

    Article  Google Scholar 

  • Santos PM, Da Cruz PG, de Araujo LC, Pezzopane JRM, do Valle CB, de Gaspari-Pezzopane C (2013) Response mechanisms of Brachiaria brizantha cultivars to water deficit stress. R Bras Zootec 42(11):767–773

    Article  Google Scholar 

  • Saura-Mas S, Lloret F (2007) Leaf and shoot water content and leaf dry matter content of Mediterranean woody species with different post-fire regenerative strategies. Ann Bot 99:545–554

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shipley B, Vu TT (2002) Dry matter content as a measure of dry matter concentration in plants and their parts. New Phytol 153:359–364

    Article  Google Scholar 

  • Snellgrove RC, Splittstoesser WE, Stribley DP, Tinker PB (1982) The distribution of carbon and the demand of the fungal symbiont in leek plants with vesicular-arbuscular mycorrhizas. New Phytol 92:75–87

    Article  Google Scholar 

  • Spiering MJ, Greer DH, Schmid J (2006) Effects of the fungal endophyte, Neotyphodium lolii, on net photosynthesis and growth rates of perennial ryegrass (Lolium perenne) are independent of In-planta endophyte concentration. Ann Bot 98(2):379–387. doi:10.1093/aob/mcl108

    Article  PubMed  PubMed Central  Google Scholar 

  • Sullivan TJ, Faeth SH (2004) Gene flow in the endophyte Neotyphodium and implications for coevolution with Festuca arizonica. Mol Ecol 13:649–656

    Article  CAS  PubMed  Google Scholar 

  • Sun C, Johnson JM, Cai D, Sherameti I, Oelmüller R, Lou B (2010) Piriformospora indica confers drought tolerance in Chinese cabbage leaves by stimulating antioxidant enzymes, the expression of drought-related genes and the plastid-localized CAS protein. J Plant Physiol 167(12):1009–1017. doi:10.1016/j.jplph.2010.02.013

    Article  CAS  PubMed  Google Scholar 

  • Taylor A (2011) Multivariate analyses with manova and GLM. Department of Psychology Macquarie University. http://psy.mq.edu.au/psystat/documents/Multivariate

  • Thomas TH (1995) Physiological Plant Ecology 3rd Edition. In: Larcher W (ed). Physiological Plant Ecology. 506 pp. Springer-Verlag, Berlin, Heidelberg. DM 68.00. ISBN 3-540-58116-2.

  • Touchette BW, Marcus SE, Adams EC (2014) Bulk elastic moduli and solute potentials in leaves of freshwater, coastal and marine hydrophytes. Are marine plants more rigid? AoB Plants 6:plu014. doi:10.1093/aobpla/plu014

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported through a program “Innovative programmatic approach to climate change in support of BecA’s mission: Climate-smart Brachiaria grasses for improving livestock production in East Africa” funded by Swedish International Development Cooperation Agency (SIDA) to BecA-ILRI Hub, Kenya. We are grateful to The University of Tasmania for offering a tuition fee scholarship to Kennedy Odokonyero in support for his Higher Degree by Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kennedy Odokonyero.

Ethics declarations

Conflict of interest

The authors declare to have no conflict of interest in this work.

Additional information

Responsible Editor: Stéphane Compant.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Odokonyero, K., Acuña, T.B., Cardoso, J.A. et al. Fungal endophyte association with Brachiaria grasses and its influence on plant water status, total non-structural carbohydrates and biomass production under drought stress. Plant Soil 409, 273–282 (2016). https://doi.org/10.1007/s11104-016-2947-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-016-2947-5

Keywords

Navigation