Al-Karaki G, McMichael B, Zak J (2004) Field response of wheat to arbuscular mycorrhizal fungi and drought stress. Mycorrhiza 14:263–269. doi:10.1007/s00572-003-0265-2
Article
PubMed
Google Scholar
Asseng S, Ewert F, Martre P, Rötter RP, Lobell DB, Cammarano D, Kimball BA, Ottman MJ, Wall GW, White JW, Reynolds MP, Alderman PD, Prasad PVV, Aggarwal PK, Anothai J, Basso B, Biernath C, Challinor AJ, De Sanctis G, Doltra J, Fereres E, Garcia-Vila M, Gayler S, Hoogenboom G, Hunt LA, Izaurralde RC, Jabloun M, Jones CD, Kersebaum KC, Koehler AK, Müller C, Naresh Kumar S, Nendel C, O’Leary G, Olesen JE, Palosuo T, Priesack E, Eyshi Rezaei E, Ruane AC, Semenov MA, Shcherbak I, Stöckle C, Stratonovitch P, Streck T, Supit I, Tao F, Thorburn PJ, Waha K, Wang E, Wallach D, Wolf J, Zhao Z, Zhu Y (2014) Rising temperatures reduce global wheat production. Nat Clim Chang 5:143–147. doi:10.1038/nclimate2470
Article
Google Scholar
Augé MR (2001) Water relations, drought and vesicular-arbuscular mycorrhizal symbiosis. Mycorrhiza 11:3–42. doi:10.1007/s005720100097
Article
Google Scholar
Baon JB, Smith SE, Alston AM (1994) Growth response and phosphorus uptake of rye with long and short root hairs: Interactions with mycorrhizal infection. Plant Soil 167:247–254. doi:10.1007/bf00007951
CAS
Article
Google Scholar
Bati C, Santilli E, Lombardo L (2015) Effect of arbuscular mycorrhizal fungi on growth and on micronutrient and macronutrient uptake and allocation in olive plantlets growing under high total Mn levels. Mycorrhiza 25:97–108. doi:10.1007/s00572-014-0589-0
Article
Google Scholar
Birhane E, Sterck FJ, Fetene M, Bongers F, Kuyper TW (2012) Arbuscular mycorrhizal fungi enhance photosynthesis, water use efficiency, and growth of frankincense seedlings under pulsed water availability conditions. Oecologia 169:895–904. doi:10.1007/s00442-012-2258-3
Article
PubMed
PubMed Central
Google Scholar
Bleiholder H et al (2001) Growth stages of mono-and dicotyledonous plants BBCH Monograph. Federal Biological Research Centre for Agriculture and Forestry
Brooker R, Kikvidze Z, Pugnaire FI, Callaway RM, Choler P, Lortie CJ, Michalet R (2005) The importance of importance. Oikos 109:63–70. doi:10.1111/j.0030-1299.2005.13557.x
Article
Google Scholar
Brown PH, Shelp BJ (1997) Boron mobility in plants. Plant Soil 193:85–101. doi:10.1023/a:1004211925160
CAS
Article
Google Scholar
Calderini DF, Reynolds MP, Slafer GA (2006) Source–sink effects on grain weight of bread wheat, durum wheat, and triticale at different locations. Aust J Agric Res 57:227–233. doi:10.1071/AR05107
Article
Google Scholar
Chapman HD, Pratt PF (1961) Methods of analysis for soils, plants, and waters. University of California, Division of Agricultural Sciences, [Riverside]
Chen X-H, Zhao B (2009) Arbuscular mycorrhizal fungi mediated uptake of nutrient elements by Chinese milk vetch (Astragalus sinicus L.) grown in lanthanum spiked soil. Biol Fertil Soils 45:675–678. doi:10.1007/s00374-009-0379-6
CAS
Article
Google Scholar
Daei G, Ardekani MR, Rejali F, Teimuri S, Miransari M (2009) Alleviation of salinity stress on wheat yield, yield components, and nutrient uptake using arbuscular mycorrhizal fungi under field conditions. J Plant Physiol 166:617–625. doi:10.1016/j.jplph.2008.09.013
CAS
Article
PubMed
Google Scholar
Daft MJ, Chilvers MT, Nicolson TH (1980) Mycorrhizas of the liliflorae I. morphogenesis of Endymion non-scriptus (L.) Garcke and its mycorrhizas in nature. New Phytol 85:181–189. doi:10.1111/j.1469-8137.1980.tb04459.x
Article
Google Scholar
FAO (2014) FAOSTAT. Food and agriculture organization of the United Nations
Farooq M, Bramley H, Palta JA, Siddique KHM (2011) Heat stress in wheat during reproductive and grain-filling phases. Crit Rev Plant Sci 30:491–507. doi:10.1080/07352689.2011.615687
Article
Google Scholar
Fay P, Mitchell DT, Osborne BA (1996) Photosynthesis and nutrient-use efficiency of barley in response to low arbuscular mycorrhizal colonization and addition of phosphorus. New Phytol 132:425–433. doi:10.1111/j.1469-8137.1996.tb01862.x
CAS
Article
PubMed
Google Scholar
Ferris RE, Ellis RH, Wheeler TR, Hadley P (1998) Effect of high temperature stress at anthesis on grain yield and biomass of field-grown crops of wheat. Ann Bot 82:631–639
Article
Google Scholar
Fitter A, Heinemeyer A, Staddon PL (2000) The impact of elevated CO2 and global climate change on arbuscular mycorrhizas: a mycocentric approach. New Phytol 147:179–187
CAS
Article
Google Scholar
Gavito ME, Olsson PA, Rouhier H, Medina-Penafiel A, Jakobsen I, Bago A, Azcon-Aguilar C (2005) Temperature constraints on the growth and functioning of root organ cultures with arbuscular mycorrhizal fungi. New Phytol 168:179–188. doi:10.1111/j.1469-8137.2005.01481.x
CAS
Article
PubMed
Google Scholar
Giovannetti M, Mosse B (1980) An evaluation of techniques for measuring vesicular arbuscular mycorrhizal infection in roots. New Phytol 84:489–500. doi:10.1111/j.1469-8137.1980.tb04556.x
Article
Google Scholar
Hawkes CV, Hartley IP, Ineson P, Fitter AH (2008) Soil temperature affects carbon allocation within arbuscular mycorrhizal networks and carbon transport from plant to fungus. Glob Chang Biol 14:1181–1190. doi:10.1111/j.1365-2486.2007.01535.x
Article
Google Scholar
IPCC (2014) Climate change 2014: impacts, adaptation, and vulnerability. Part a: global and sectoral aspects. In: Field CB, Barros VR, Dokken DJ, Mach KJ, Mastrandrea MD, Bilir TE, Chatterjee M, Ebi KL, Estrada YO, Genova RC, Girma B, Kissel ES, Levy AN, MacCracken S, Mastrandrea PR, White LL (eds) Contribution of working group II to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, and New York
Google Scholar
Johnson D, Leake JR, Ostle N, Ineson P, Read DJ (2002) In situ 13CO2 pulse-labelling of upland grassland demonstrates a rapid pathway of carbon flux from arbuscular mycorrhizal mycelia to the soil. New Phytol 153:327–334. doi:10.1046/j.0028-646X.2001.00316.x
CAS
Article
Google Scholar
Kaschuk G, Kuyper TW, Leffelaar PA, Hungria M, Giller KE (2009) Are the rates of photosynthesis stimulated by the carbon sink strength of rhizobial and arbuscular mycorrhizal symbioses? Soil Biol Biochem 41:1233–1244. doi:10.1016/j.soilbio.2009.03.005
CAS
Article
Google Scholar
Katz RW, Brown BG (1992) Extreme events in a changing climate: Variability is more important than averages. Clim Chang 21:289–302. doi:10.1007/bf00139728
Article
Google Scholar
Kaya C, Higgs D, Kirnak H, Tas I (2003) Mycorrhizal colonisation improves fruit yield and water use efficiency in watermelon (Citrullus lanatus Thunb.) grown under well-watered and water-stressed conditions. Plant Soil 253:287–292. doi:10.1023/a:1024843419670
CAS
Article
Google Scholar
Kinsel H (1983) Pflanzenökologie und Mineralstoffwechsel. Kinsel, 534 S. In: Kinsel H (ed). Ulmer Verlag, Stuttgart
Kirby EJM (1988) Analysis of leaf, stem and ear growth in wheat from terminal spikelet stage to anthesis. Field Crop Res 18:127–140. doi:10.1016/0378-4290(88)90004-4
Article
Google Scholar
Lehmann A, Rillig MC (2015) Arbuscular mycorrhizal contribution to copper, manganese and iron nutrient concentrations in crops – A meta-analysis. Soil Biol Biochem 81:147–158. doi:10.1016/j.soilbio.2014.11.013
CAS
Article
Google Scholar
Liu A, Hamel C, Hamilton IR, Ma LB, Smith LD (2000) Acquisition of Cu, Zn, Mn and Fe by mycorrhizal maize (Zea mays L.) grown in soil at different P and micronutrient levels. Mycorrhiza 9:331–336. doi:10.1007/s005720050277
CAS
Article
Google Scholar
Lobell DB, Tebaldi C (2014) Getting caught with our plants down: the risks of a global crop yield slowdown from climate trends in the next two decades. Environ Res Lett 9:074003. doi:10.1088/1748-9326/9/7/074003
Article
Google Scholar
Lobell DB, Sibley A, Ivan Ortiz-Monasterio J (2012) Extreme heat effects on wheat senescence in India. Nat Clim Chang 2:186–189. doi:10.1038/nclimate1356
Article
Google Scholar
Massacci A, Nabiev SM, Pietrosanti L, Nematov SK, Chernikova TN, Thor K, Leipner J (2008) Response of the photosynthetic apparatus of cotton (Gossypium hirsutum) to the onset of drought stress under field conditions studied by gas-exchange analysis and chlorophyll fluorescence imaging. Plant Physiol Biochem 46:189–195. doi:10.1016/j.plaphy.2007.10.006
CAS
Article
PubMed
Google Scholar
Maya MA, Matsubara Y (2013) Influence of arbuscular mycorrhiza on the growth and antioxidative activity in cyclamen under heat stress. Mycorrhiza 23:381–390. doi:10.1007/s00572-013-0477-z
CAS
Article
PubMed
Google Scholar
McGonigle TP, Miller MH, Evans DG, Fairchild GL, Swan JA (1990) A new method which gives an objective measure of colonization of roots by vesicular—arbuscular mycorrhizal fungi. New Phytol 115:495–501. doi:10.1111/j.1469-8137.1990.tb00476.x
Article
Google Scholar
Miller RO (1998) Microwave digestion of plant tissue in a closed vessel. Handbook and reference methods for plant analysis 69–74
Mortimer PE, Pérez-Fernández MA, Valentine AJ (2008) The role of arbuscular mycorrhizal colonization in the carbon and nutrient economy of the tripartite symbiosis with nodulated Phaseolus vulgaris. Soil Biol Biochem 40:1019–1027. doi:10.1016/j.soilbio.2007.11.014
CAS
Article
Google Scholar
Munkvold L, Kjøller R, Vestberg M, Rosendahl S, Jakobsen I (2004) High functional diversity within species of arbuscular mycorrhizal fungi. New Phytol 164:357–364. doi:10.1111/j.1469-8137.2004.01169.x
Article
Google Scholar
Paul MJ, Pellny TK (2003) Carbon metabolite feedback regulation of leaf photosynthesis and development. J Exp Bot 54:539–547
CAS
Article
PubMed
Google Scholar
Porter JR, Gawith M (1999) Temperatures and the growth and development of wheat: a review. Eur J Agron 10:23–36
Article
Google Scholar
Posta K, Marschner H, Römheld V (1994) Manganese reduction in the rhizosphere of mycorrhizal and nonmycorrhizal maize. Mycorrhiza 5:119–124. doi:10.1007/bf00202343
CAS
Article
Google Scholar
Prasad PVV, Staggenborg SA, Ristic Z (2008) Impacts of drought and/or heat stress on physiological, developmental, growth, and yield processes of crop plants. In: Ahuja LR, Reddy VR, Saseendran SA, Yu Q (eds) Response of crops to limited water: understanding and modeling water stress effects on plant growth processes. American Society of Agronomy, Crop Science Society of America, Soil Science Society of America, Madison
Google Scholar
R Core Team (2015) A language and environment for statistical computing. Vienna, Austria. 2014
Ravnskov S, Jakobsen I (1995) Functional compatibility in Arbuscular Mycorrhizas measured as hyphal P transport to the plant. New Phytol 129:611–618. doi:10.1111/j.1469-8137.1995.tb03029.x
Article
Google Scholar
Ravnskov S, Larsen J (2016) Functional compatibility in cucumber mycorrhizas in terms of plant growth performance and foliar nutrient composition. Plant Biol. doi:10.1111/plb.12465
PubMed
Google Scholar
Rodriguez D, Goudriaan J (1995) Effects of phosphorus and drought stresses on dry matter and phosphorus allocation in wheat. J Plant Nutr 18:2501–2517. doi:10.1080/01904169509365080
CAS
Article
Google Scholar
Ruban AV (2016) Nonphotochemical chlorophyll fluorescence quenching: mechanism and effectiveness in protecting plants from photodamage. Plant Physiol 170:1903–1916. doi:10.1104/pp.15.01935
CAS
Article
PubMed
Google Scholar
Ryan MH, Angus JF (2003) Arbuscular mycorrhizae in wheat and field pea crops on a low P soil: increased Zn-uptake but no increase in P-uptake or yield. Plant Soil 250:225–239. doi:10.1023/a:1022839930134
CAS
Article
Google Scholar
Schapendonk AHCM, Xu HY, Van Der Putten PEL, Spiertz JHJ (2007) Heat-shock effects on photosynthesis and sink-source dynamics in wheat (Triticum aestivum L.). NJAS - Wagening J Life Sci 55:37–54. doi:10.1016/S1573-5214(07)80003-0
Article
Google Scholar
Slafer GA, Andrade FH (1993) Physiological attributes related to the generation of grain yield in bread wheat cultivars released at different eras. Field Crop Res 31:351–367. doi:10.1016/0378-4290(93)90073-V
Article
Google Scholar
Slafer GA, Savin R (1994) Source-sink relationships and grain mass at different positions whitin the spike in wheat. Field Crop Res 37:39–49
Article
Google Scholar
Staddon PL, Gregersen R, Jakobsen I (2004) The response of two Glomus mycorrhizal fungi and a fine endophyte to elevated atmospheric CO2, soil warming and drought. Glob Chang Biol 10:1909–1921. doi:10.1111/j.1365-2486.2004.00861.x
Article
Google Scholar
Tewolde H, Fernandez CJ, Erickson CA (2006) Wheat cultivars adapted to post-heading high temperature stress. J Agron Crop Sci 192:111–120. doi:10.1111/j.1439-037X.2006.00189.x
Article
Google Scholar
Vierheilig H, Coughlan AP, Wyss U, Piché Y (1998) Ink and vinegar, a simple staining technique for arbuscular-mycorrhizal fungi. Appl Environ Microbiol 64:5004–5007
CAS
PubMed
PubMed Central
Google Scholar
Vignjevic M, Wang X, Olesen JE, Wollenweber B (2015) Traits in spring wheat cultivars associated with yield loss caused by a heat stress episode after anthesis. J Agron Crop Sci 201:32–48. doi:10.1111/jac.12085
CAS
Article
Google Scholar
Walter J, Kreyling J, Singh BK, Jentsch A (2016) Effects of extreme weather events and legume presence on mycorrhization of Plantago lanceolata and Holcus lanatus in the field. Plant Biol 18:262–270. doi:10.1111/plb.12379
CAS
Article
PubMed
Google Scholar
Wang M, Christie P, Xiao Z, Qin C, Wang P, Liu J, Xie Y, Xia R (2008) Arbuscular mycorrhizal enhancement of iron concentration by Poncirus trifoliata L. Raf and citrus reticulata Blanco grown on sand medium under different pH. Biol Fertil Soils 45:65–72. doi:10.1007/s00374-008-0290-6
CAS
Article
Google Scholar
Wardlaw I, Wrigley C (1994) Heat tolerance in temperate cereals: an overview. Funct Plant Biol 21:695–703. doi:10.1071/PP9940695
Google Scholar
Wollenweber B, Porter J, Schellberg J (2003) Lack of interaction between extreme high-temperature events at vegetative and reproductive growth stages in wheat. J Agron Crop Sci 189:142–150
Article
Google Scholar
Zahedi M, Jenner CF (2003) Analysis of effects in wheat of high temperature on grain filling attributes estimated from mathematical models of grain filling. J Agric Sci 141:203–212
Article
Google Scholar
Zhang X, Cai J, Wollenweber B, Liu F, Dai T, Cao W, Jiang D (2013) Multiple heat and drought events affect grain yield and accumulations of high molecular weight glutenin subunits and glutenin macropolymers in wheat. J Cereal Sci 57:134–140. doi:10.1016/j.jcs.2012.10.010
CAS
Article
Google Scholar
Zhang BB, Chang SX, Anyia AO (2016) Mycorrhizal inoculation and nitrogen fertilization affect the physiology and growth of spring wheat under two contrasting water regimes. Plant Soil 398:47–57. doi:10.1007/s11104-015-2635-x
CAS
Article
Google Scholar
Zhou Q, Ravnskov S, Jiang D, Wollenweber B (2014) Changes in carbon and nitrogen allocation, growth and grain yield induced by arbuscular mycorrhizal fungi in wheat (Triticum aestivum L.) subjected to a period of water deficit. Plant Growth Regul 75:751–760. doi:10.1007/s10725-014-9977-x
Article
Google Scholar
Zhu X-C, Song F-B, Liu S-Q, Liu T-D (2011) Effects of arbuscular mycorrhizal fungus on photosynthesis and water status of maize under high temperature stress. Plant Soil 346:189–199. doi:10.1007/s11104-011-0809-8
CAS
Article
Google Scholar
Zhu XC, Song FB, Liu SQ, Liu FL (2016) Arbuscular mycorrhiza improve growth, nitrogen uptake, and nitrogen use efficiency in wheat grown under elevated CO2. Mycorrhiza 26:133–140. doi:10.1007/s00572-015-0654-3
CAS
Article
PubMed
Google Scholar