Plant and Soil

, Volume 411, Issue 1–2, pp 111–120 | Cite as

How metal hyperaccumulating plants can advance Zn biofortification

  • Stephan ClemensEmail author
Regular Article



Zn hyperaccumulating plants reach Zn concentrations in their leaves that are several hundredfold higher than the target values set for Zn-biofortified crops.


This extreme trait is relevant for Zn biofortification in various ways that are being discussed based on what is known about Zn hyperaccumulating plants.


First, Zn hyperaccumulation is the result of changes in metal homeostasis networks shared by all higher plants. It is not strictly dependent on high Zn levels in the soil. Thus, mechanistic insights gained from the study of Zn hyperaccumulators can support the breeding and engineering of Zn-biofortified crops. Second, certain plant families, the Brassicaceae in particular, appear to be genetically predispositioned to evolve enhanced Zn accumulation, suggesting the existence of intermediate species with elevated Zn concentrations in their leaves below the hyperaccumulation threshold or the potential to breed for such plants. This calls for extended screening especially among potential vegetable crops, ideally guided by knowledge about the at least partially convergent evolution of Zn hyperaccumulation. Third, the introduction of leafy vegetables with high Zn concentrations or even of Zn hyperaccumulator leaves into diets may represent a valid complementary biofortification approach.


Biofortification Metal hyperaccumulation Metal homeostasis Zn homeostasis Independent evolution Food safety Novel foods 



I am grateful to Mark Aarts for discussions and to Hassan Ahmadi for the A. halleri picture. Work in the author’s laboratory on Zn hyperaccumulation is supported by the Deutsche Forschungsgemeinschaft (CL 152/9-2).


  1. Assuncao AGL, Bookum WM, Nelissen HJM, et al. (2003) Differential metal-specific tolerance and accumulation patterns among Thlaspi caerulescens populations originating from different soil types. New Phytol 159:411–419CrossRefGoogle Scholar
  2. Assuncao AG, Pieper B, Vromans J, et al. (2006) Construction of a genetic linkage map of Thlaspi caerulescens and quantitative trait loci analysis of zinc accumulation. New Phytol 170:21–32CrossRefPubMedGoogle Scholar
  3. Avato P, Argentieri MP (2015) Brassicaceae: a rich source of health improving phytochemicals. Phytochem Rev 14:1019–1033CrossRefGoogle Scholar
  4. Bashir K, Takahashi R, Nakanishi H, Nishizawa NK (2013) The road to micronutrient biofortification of rice: progress and prospects. Front Plant Sci 4:15CrossRefPubMedPubMedCentralGoogle Scholar
  5. Becher M, Talke IN, Krall L, Krämer U (2004) Cross-species microarray transcript profiling reveals high constitutive expression of metal homeostasis genes in shoots of the zinc hyperaccumulator Arabidopsis halleri. Plant J 37:251–268CrossRefPubMedGoogle Scholar
  6. Bert V, Macnair MR, De Laguerie P, et al. (2000) Zinc tolerance and accumulation in metallicolous and nonmetallicolous populations of Arabidopsis halleri (Brassicaceae). New Phytol 146:225–234CrossRefGoogle Scholar
  7. Bert V, Bonnin I, Saumitou-Laprade P, et al. (2002) Do Arabidopsis halleri from nonmetallicolous populations accumulate zinc and cadmium more effectively than those from metallicolous populations? New Phytol 155:47–57CrossRefGoogle Scholar
  8. Björkman M, Klingen I, Birch ANE, et al. (2011) Phytochemicals of Brassicaceae in plant protection and human health - influences of climate, environment and agronomic practice. Phytochem 72:538–556CrossRefGoogle Scholar
  9. Blaauboer BJ, Boobis AR, Bradford B, et al. (2016) Considering new methodologies in strategies for safety assessment of foods and food ingredients. Food Chem Toxicol. doi: 10.1016/j.fct.2016.02.019 PubMedGoogle Scholar
  10. Blair MW, Astudillo C, Rengifo J, et al. (2011) QTL analyses for seed iron and zinc concentrations in an intra-genepool population of Andean common beans (Phaseolus vulgaris L.). Theor Appl Genet 122:511–521CrossRefPubMedGoogle Scholar
  11. Bouis HE, Welch RM (2010) Biofortification - a sustainable agricultural strategy for reducing micronutrient malnutrition in the global south. Crop Sci 50:S20–S32CrossRefGoogle Scholar
  12. Broadley MR, White PJ, Hammond JP, et al. (2007) Zinc in plants. New Phytol 173:677–702CrossRefPubMedGoogle Scholar
  13. Cakmak I, Pfeiffer WH, McClafferty B (2010) Biofortification of durum wheat with zinc and iron. Cereal Chem 87:10–20CrossRefGoogle Scholar
  14. Cappa JJ, Pilon-Smits EAH (2013) Evolutionary aspects of elemental hyperaccumulation. Planta 239:1–9Google Scholar
  15. Cavaiuolo M, Ferrante A (2014) Nitrates and glucosinolates as strong determinants of the nutritional quality in rocket leafy salads. Nutrients 6:1519–1538CrossRefPubMedPubMedCentralGoogle Scholar
  16. Clemens S (2014) Zn and Fe biofortification: the right chemical environment for human bioavailability. Plant Sci 225:52–57CrossRefPubMedGoogle Scholar
  17. Clemens S, Palmgren MG, Krämer U (2002) A long way ahead: understanding and engineering plant metal accumulation. Trends Plant Sci 7:309–315CrossRefPubMedGoogle Scholar
  18. Clemens S, Aarts MGM, Thomine S, Verbruggen N (2013a) Plant science: the key to preventing slow cadmium poisoning. Trends Plant Sci 18:92–99CrossRefPubMedGoogle Scholar
  19. Clemens S, Deinlein U, Ahmadi H, et al. (2013b) Nicotianamine is a major player in plant Zn homeostasis. Biometals 26:623–632CrossRefPubMedGoogle Scholar
  20. Cornu J-Y, Deinlein U, Höreth S, et al. (2015) Contrasting effects of nicotianamine synthase knockdown on zinc and nickel tolerance and accumulation in the zinc/cadmium hyperaccumulator Arabidopsis halleri. New Phytol 206:738–750Google Scholar
  21. Courbot M, Willems G, Motte P, et al. (2007) A major QTL for Cd tolerance in Arabidopsis halleri co-localizes with HMA4, a gene encoding a heavy metal ATPase. Plant Physiol 144:1052–1065CrossRefPubMedPubMedCentralGoogle Scholar
  22. Curie C, Cassin G, Couch D, et al. (2009) Metal movement within the plant: contribution of nicotianamine and yellow stripe 1-like transporters. Ann Bot 103:1–11CrossRefPubMedGoogle Scholar
  23. Deinlein U, Weber M, Schmidt H, et al. (2012) Elevated nicotianamine levels in Arabidopsis halleri roots play a key role in zinc hyperaccumulation. Plant Cell 24:708–723CrossRefPubMedPubMedCentralGoogle Scholar
  24. Deng T-H-B, Tang Y-T, van der EA, et al. (2016) Nickel translocation via the phloem in the hyperaccumulator Noccaea caerulescens (Brassicaceae). Plant Soil (in press). doi: 10.1007/s11104-016-2825-1 PubMedCentralGoogle Scholar
  25. Deniau AX, Pieper B, Ten Bookum WM, et al. (2006) QTL analysis of cadmium and zinc accumulation in the heavy metal hyperaccumulator Thlaspi caerulescens. Theor Appl Genet 113:907–920CrossRefPubMedGoogle Scholar
  26. Dräger DB, Desbrosses-Fonrouge AG, Krach C, et al. (2004) Two genes encoding Arabidopsis halleri MTP1 metal transport proteins co-segregate with zinc tolerance and account for high MTP1 transcript levels. Plant J 39:425–439CrossRefPubMedGoogle Scholar
  27. EFSA (European Food Safety Authority) (2009) Scientific opinion of the panel on contaminants in the food chain on a request from the European Commission on cadmium in food. EFSA J 980:1–139Google Scholar
  28. Frérot H, Faucon M-P, Willems G, et al. (2010) Genetic architecture of zinc hyperaccumulation in Arabidopsis halleri: the essential role of QTL × environment interactions. New Phytol 187:355–367Google Scholar
  29. Gao J, Sun L, Yang X, Liu J-X (2013) Transcriptomic analysis of cadmium stress response in the heavy metal hyperaccumulator Sedum alfredii Hance. PLoS One 8:e64643CrossRefPubMedPubMedCentralGoogle Scholar
  30. Genc Y, Verbyla AP, Torun AA, et al. (2009) Quantitative trait loci analysis of zinc efficiency and grain zinc concentration in wheat using whole genome average interval mapping. Plant Soil 314:49–66CrossRefGoogle Scholar
  31. Gibson RS (2012) Zinc deficiency and human health: etiology, health consequences, and future solutions. Plant Soil 361:291–299CrossRefGoogle Scholar
  32. Gowik U, Westhoff P (2011) The path from C-3 to C-4 photosynthesis. Plant Physiol 155:56–63CrossRefPubMedGoogle Scholar
  33. Gupta P, Kim B, Kim S-H, Srivastava SK (2014) Molecular targets of isothiocyanates in cancer: recent advances. Mol Nutr Food Res 58:1685–1707CrossRefPubMedPubMedCentralGoogle Scholar
  34. Gustin JL, Loureiro ME, Kim D, et al. (2009) MTP1-dependent Zn sequestration into shoot vacuoles suggests dual roles in Zn tolerance and accumulation in Zn-hyperaccumulating plants. Plant J 57:1116–1127CrossRefPubMedGoogle Scholar
  35. Halimaa P, Lin Y-F, Ahonen V, et al. (2014) Gene expression differences between Noccaea caerulescens ecotypes help identifying candidate genes for metal phytoremediation. Environ Sci Technol 48:3344–3353CrossRefPubMedGoogle Scholar
  36. Hambidge KM, Miller LV, Westcott JE, et al. (2010) Zinc bioavailability and homeostasis. Am J Clin Nutr 91:1478S–1483SCrossRefPubMedPubMedCentralGoogle Scholar
  37. Hammond JP, Bowen HC, White PJ, et al. (2006) A comparison of the Thlaspi caerulescens and Thlaspi arvense shoot transcriptomes. New Phytol 170:239–260CrossRefPubMedGoogle Scholar
  38. Hanikenne M, Nouet C (2011) Metal hyperaccumulation and hypertolerance: a model for plant evolutionary genomics. Curr Opin Plant Biol 14:252–259CrossRefPubMedGoogle Scholar
  39. Hanikenne M, Talke IN, Haydon MJ, et al. (2008) Evolution of metal hyperaccumulation required cis-regulatory changes and triplication of HMA4. Nature 453:391–395CrossRefPubMedGoogle Scholar
  40. Hanikenne M, Kroymann J, Trampczynska A, et al. (2013) Hard selective sweep and ectopic gene conversion in a gene cluster affording environmental adaptation. PLoS Genet 9:e1003707CrossRefPubMedPubMedCentralGoogle Scholar
  41. Howlett J, Edwards DG, Cockburn A, et al. (2003) The safety assessment of novel foods and concepts to determine their safety in use. Int J Food Sci Nutr 54:S1–S32CrossRefGoogle Scholar
  42. Kazemi-Dinan A, Thomaschky S, Stein RJ, et al. (2014) Zinc and cadmium hyperaccumulation act as deterrents towards specialist herbivores and impede the performance of a generalist herbivore. New Phytol 202:628–639CrossRefPubMedGoogle Scholar
  43. Kozhevnikova AD, Seregin IV, Erlikh NT, et al. (2014) Histidine-mediated xylem loading of zinc is a species-wide character in Noccaea caerulescens. New Phytol 203:508–519CrossRefPubMedGoogle Scholar
  44. Krämer U (2010) Metal hyperaccumulation in plants. Annu Rev Plant Biol 61:517–534CrossRefPubMedGoogle Scholar
  45. Lee S, Persson DP, Hansen TH, et al. (2011) Bio-available zinc in rice seeds is increased by activation tagging of nicotianamine synthase. Plant Biotechnol J 9:865–873CrossRefPubMedGoogle Scholar
  46. Lin Y-F, Hassan Z, Talukdar S, et al. (2016) Expression of the ZNT1 zinc transporter from the metal hyperaccumulator Noccaea caerulescens confers enhanced zinc and cadmium tolerance and accumulation to Arabidopsis thaliana. PLoS One 11:e0149750CrossRefPubMedPubMedCentralGoogle Scholar
  47. Lochlainn S, Bowen HC, Fray RG, et al (2011) Tandem quadruplication of HMA4 in the zinc (Zn) and cadmium (Cd) hyperaccumulator Noccaea caerulescens. PLoS ONE 6:e17814. dGoogle Scholar
  48. Lombi E, Zhao F, Dunham S, McGrath S (2000) Cadmium accumulation in populations of Thlaspi caerulescens and Thlaspi goesingense. New Phytol 145:11–20CrossRefGoogle Scholar
  49. Lonergan PF, Pallotta MA, Lorimer M, et al. (2009) Multiple genetic loci for zinc uptake and distribution in barley (Hordeum vulgare). New Phytol 184:168–179CrossRefPubMedGoogle Scholar
  50. Mamo BE, Barber BL, Steffenson BJ (2014) Genome-wide association mapping of zinc and iron concentration in barley landraces from Ethiopia and Eritrea. J Cereal Sci 60:497–506CrossRefGoogle Scholar
  51. Maret W, Sandstead HH (2006) Zinc requirements and the risks and benefits of zinc supplementation. J Trace Elem Med Biol 20:3–18CrossRefPubMedGoogle Scholar
  52. Mills RF, Peaston KA, Runions J, Williams LE (2012) HvHMA2, a P1B-ATPase from barley, is highly conserved among cereals and functions in Zn and Cd transport. PLoS One 7:e42640CrossRefPubMedPubMedCentralGoogle Scholar
  53. Olsen LI, Palmgren MG (2014) Many rivers to cross: the journey of zinc from soil to seed. Front Plant Sci 5:30PubMedPubMedCentralGoogle Scholar
  54. Olsen LI, Hansen TH, Larue C, et al. (2016) Mother-plant-mediated pumping of zinc into the developing seed. Nature Plants (in press). doi: 10.1038/nplants.2016.36 Google Scholar
  55. Pfeiffer WH, McClafferty B (2007) Harvestplus: breeding crops for better nutrition. Crop Sci 47:S88–S105CrossRefGoogle Scholar
  56. Phattarakul N, Rerkasem B, Li LJ, et al. (2012) Biofortification of rice grain with zinc through zinc fertilization in different countries. Plant Soil 361:131–141CrossRefGoogle Scholar
  57. Pollard AJ, Reeves RD, Baker AJM (2014) Facultative hyperaccumulation of heavy metals and metalloids. Plant Sci 217-218:8–17CrossRefPubMedGoogle Scholar
  58. Rascio N, Navari-Izzo F (2011) Heavy metal hyperaccumulating plants: how and why do they do it? And what makes them so interesting? Plant Sci 180:169–181CrossRefPubMedGoogle Scholar
  59. Ricachenevsky FK, Menguer PK, Sperotto RA, et al. (2013) Roles of plant metal tolerance proteins (MTP) in metal storage and potential use in biofortification strategies. Front Plant Sci 4:144PubMedPubMedCentralGoogle Scholar
  60. Ricachenevsky FK, Menguer PK, Sperotto RA, Fett JP (2015) Got to hide your Zn away: molecular control of Zn accumulation and biotechnological applications. Plant Sci 236:1–17CrossRefPubMedGoogle Scholar
  61. Roohani N, Hurrell R, Kelishadi R, Schulin R (2013) Zinc and its importance for human health: an integrative review. J Res Med Sci 18:144–157PubMedPubMedCentralGoogle Scholar
  62. Schuler M, Rellán-Álvarez R, Fink-Straube C, et al. (2012) Nicotianamine functions in the phloem-based transport of iron to sink organs, in pollen development and pollen tube growth in Arabidopsis. Plant Cell 24:2380–2400CrossRefPubMedPubMedCentralGoogle Scholar
  63. Scott O, Galicia-Connolly E, Adams D, et al. (2012) The safety of cruciferous plants in humans: a systematic review. J Biomed Biotechnol 2012:503241CrossRefPubMedPubMedCentralGoogle Scholar
  64. Shahzad Z, Gosti F, Frerot H, et al. (2010) The five AhMTP1 zinc transporters undergo different evolutionary fates towards adaptive evolution to zinc tolerance in Arabidopsis halleri. PLoS Genet 6:e1000911CrossRefPubMedPubMedCentralGoogle Scholar
  65. Singh SV, Singh K (2012) Cancer chemoprevention with dietary isothiocyanates mature for clinical translational research. Carcinogenesis 33:1833–1842CrossRefPubMedPubMedCentralGoogle Scholar
  66. Talke IN, Hanikenne M, Krämer U (2006) Zinc-dependent global transcriptional control, transcriptional deregulation, and higher gene copy number for genes in metal homeostasis of the hyperaccumulator Arabidopsis halleri. Plant Physiol 142:148–167CrossRefPubMedPubMedCentralGoogle Scholar
  67. Tauris B, Borg S, Gregersen PL, Holm PB (2009) A roadmap for zinc trafficking in the developing barley grain based on laser capture microdissection and gene expression profiling. J Exp Bot 60:1333–1347CrossRefPubMedPubMedCentralGoogle Scholar
  68. Tomasi N, Pinton R, Dalla Costa L, et al. (2015) New “solutions” for floating cultivation system of ready-to-eat salad: a review. Trends Food Sci Technol 46:267–276CrossRefGoogle Scholar
  69. van de Mortel JE, Almar Villanueva L, Schat H, et al. (2006) Large expression differences in genes for iron and zinc homeostasis, stress response, and lignin biosynthesis distinguish roots of Arabidopsis thaliana and the related metal hyperaccumulator Thlaspi caerulescens. Plant Physiol 142:1127–1147CrossRefPubMedPubMedCentralGoogle Scholar
  70. van der Ent A, Baker AJM, Reeves RD, et al. (2012) Hyperaccumulators of metal and metalloid trace elements: facts and fiction. Plant Soil 362:319–334Google Scholar
  71. Verbruggen N, Hermans C, Schat H (2009) Molecular mechanisms of metal hyperaccumulation in plants. New Phytol 181:759–776CrossRefPubMedGoogle Scholar
  72. Verbruggen N, Hanikenne M, Clemens S (2013) A more complete picture of metal hyperaccumulation through next-generation sequencing technologies. Front Plant Sci 4:388CrossRefPubMedPubMedCentralGoogle Scholar
  73. Warwick SI (2011) Brassicaceae in Agriculture. In: R. Schmidt, I. Bancroft (eds.), Genetics and Genomics of the Brassicaceae, Plant Genetics and Genomics: Crops and Models 9, Springer.Google Scholar
  74. Weber M, Harada E, Vess C, et al. (2004) Comparative microarray analysis of Arabidopsis thaliana and Arabidopsis halleri roots identifies nicotianamine synthase, a ZIP transporter and other genes as potential metal hyperaccumulation factors. Plant J 37:269–281CrossRefPubMedGoogle Scholar
  75. White PJ, Broadley MR (2009) Biofortification of crops with seven mineral elements often lacking in human diets - iron, zinc, copper, calcium, magnesium, selenium and iodine. New Phytol 182:49–84CrossRefPubMedGoogle Scholar
  76. White PJ, Broadley MR (2011) Physiological limits to zinc biofortification of edible crops. Front Plant Sci 2:80CrossRefPubMedPubMedCentralGoogle Scholar
  77. Willems G, Dräger DB, Courbot M, et al. (2007) The genetic basis of zinc tolerance in the metallophyte Arabidopsis halleri ssp. halleri (Brassicaceae): an analysis of quantitative trait loci. Genetics 176:659–674CrossRefPubMedPubMedCentralGoogle Scholar
  78. Willems G, Frerot H, Gennen J, et al. (2010) Quantitative trait loci analysis of mineral element concentrations in an Arabidopsis halleri x Arabidopsis lyrata petraea F2 progeny grown on cadmium-contaminated soil. New Phytol 187:368–379CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Department of Plant PhysiologyUniversity of BayreuthBayreuthGermany

Personalised recommendations