Advertisement

Plant and Soil

, Volume 408, Issue 1–2, pp 107–120 | Cite as

Spring to autumn changes in the arbuscular mycorrhizal fungal community composition in the different propagule types associated to a Mediterranean shrubland

  • Sara Varela-Cervero
  • Álvaro López-García
  • José M. Barea
  • Concepción Azcón-Aguilar
Regular Article

Abstract

Background and aims

Arbuscular mycorrhizal fungi (AMF) appear differentially represented among propagule forms [intraradical mycelium (IRM) in colonized roots, spores and extraradical mycelium (ERM)]. However, spring to autumn changes in the AMF communities harboured in the different propagule forms has not been studied, being this the aim of the present study.

Methods

A terminal restriction fragment length polymorphism approach was used to monitor, in spring and autumn, the AMF community composition present in the three propagule types associated to five shrub species in a semi-arid Mediterranean environment.

Results

The AMF community composition in roots was significantly different between spring and autumn; however, no significant differences were detected in soil propagules (spores and ERM). Different trends were identified according to the preferential biomass allocation patterns of AMF phylotypes, suggesting different life strategies: those allocating mainly into IRM (belonging to the Glomeraceae), ERM (Diversisporaceae and Gigasporaceae) or spores (Pacisporaceae and Paraglomeraceae).

Conclusions

Differences of AMF taxa in the biomass allocation patterns among propagules are maintained throughout the year. Progress in the knowledge of functional features of AMF communities and their responses to seasonal variations are important for the AMF application in Mediterranean ecosystems.

Keywords

Arbuscular mycorrhizal fungi Diversity Mycorrhizal propagules Seasonal changes Life strategy Mediterranean environments 

Notes

Acknowledgments

Sara Varela-Cervero thanks the Formación de Personal Investigador Programme (Ministerio de Ciencia e Innovación) for financial support. This research was supported by the Spanish government under the Plan Nacional de I + D + I, co-financed by FEDER funds (project CGL-2009-08825) and the Junta de Andalucía, Consejería de Economía, Innovación y Ciencia (project CVI-7640). We also thank the Consejería de Medio Ambiente, Junta de Andalucía (Spain) for permission to work in Sierra de Baza Natural Park. We sincerely thank Estefanía Berrio for technical assistance and José-Miguel Barea Azcón, from the Environment and Water Agency of Andalusia, for providing the climatic data of the study site. Additionally, we would like to thank the two anonymous reviewers and the Section Editor for their valuable comments and suggestions to improve the manuscript.

Supplementary material

11104_2016_2912_MOESM1_ESM.pdf (104 kb)
Fig S1 Neighbor-joining tree based on the AML1-AML2 fragment of the small subunit of rDNA gene displaying phylogenetic relationships of the arbuscular mycorrhizal fungi detected in this study. Numbers near branches indicate the bootstrap supporting values. Only topologies with values ≥ 50 % are shown (1000 replicates). Sequences are labelled according to the clone identity number. Clusters (grey boxes) include sequences showing a pairwise similarity higher than 98 %, representing different phylotypes. Phylotypes are named following the closest virtual taxa code of MaarjAM database (Öpik et al. 2010). The prefix corresponds to the Glomeromycota family, following the consensus classification proposed by Redecker et al. 2013: Glo-Glomeraceae, Cla-Claroideoglomeraceae, Div-Diversisporaceae, Scu-Gigasporaceae, Pac-Pacisporaceae, Par-Paraglomeraceae. Mortierella polycephala was used as out-group. (PDF 104 kb)

References

  1. Allen H (2009) Vegetation and ecosystem dynamics. In: Woodward JC (ed) The physical geography of the Mediterranean. Oxford University Press, Oxford, pp 203–227Google Scholar
  2. Bardgett RD, van der Putten WH (2014) Belowground biodiversity and ecosystem functioning. Nature 515:505–511CrossRefPubMedGoogle Scholar
  3. Barea JM, Palenzuela J, Cornejo P, Sánchez-Castro I, Navarro-Fernández C, Lopéz-García A, Estrada B, Azcón R, Ferrol N, Azcón-Aguilar C (2011) Ecological and functional roles of mycorrhizas in semi-arid ecosystems of Southeast Spain. J Arid Environ 75:1292–1301CrossRefGoogle Scholar
  4. Bates ST, Clemente JC, Flores GE, Walters WA, Parfrey LW, Knight R, Fierer N (2012) Global biogeography of highly diverse protistan communities in soil. ISME J 7:652–659CrossRefPubMedPubMedCentralGoogle Scholar
  5. Bennett AE, Daniell TJ, Öpik M, Davison J, Moora M, Zobel M, Selosse MA, Evans D (2013) Arbuscular mycorrhizal fungal networks vary throughout the growing season and between successional stages. PLoS ONE 8, e83241CrossRefPubMedPubMedCentralGoogle Scholar
  6. Bever JD, Richardson SC, Brandy ML, Holmes J, Watson M (2009) Preferential allocation to beneficial symbiont with spatial structure maintains mycorrhizal mutualism. Ecol Lett 12:13–21CrossRefPubMedGoogle Scholar
  7. Brito I, De Carvalho M, Goss MJ (2011) Summer survival of arbuscular mycorrhiza extraradical mycelium and the potential for its management through tillage options in Mediterranean cropping systems. Soil Use Manag 27:350–356Google Scholar
  8. Brundrett M, Melville L, Peterson L (1994) Practical methods in Mycorrhiza research. Mycologue Publications, University of Guelph, GuelphGoogle Scholar
  9. Chagnon PL, Bradley RL, Maherali H, Klironomos JN (2013) A trait-based framework to understand life history of mycorrhizal fungi. Trends Plant Sci 18:484–491CrossRefPubMedGoogle Scholar
  10. Chytrý M, Tichý L, Holt J, Botta-Dukát Z (2002) Determination of diagnostic species with statistical fidelity measures. J Veg Sci 13:79–90CrossRefGoogle Scholar
  11. Collins RE, Rocap G (2007) REPK: an analytical web server to select restriction endonucleases for terminal restriction fragment length polymorphism analysis. Nucleic Acids Res 35:W58–W62CrossRefPubMedPubMedCentralGoogle Scholar
  12. Cornejo P, Azcón-Aguilar C, Barea JM, Ferrol N (2004) Temporal temperature gradient gel electrophoresis (TTGE) as a tool for the characterization of arbuscular mycorrhizal fungi. FEMS Microbiol Lett 241:265–270CrossRefPubMedGoogle Scholar
  13. Cotton TEA, Dumbrell AJ, Helgason T (2014) What goes in must come out: testing for biases in molecular analysis of arbuscular mycorrhizal fungal communities. PLoS ONE. doi: 10.1371/journal.pone.0109234 Google Scholar
  14. Davison J, Öpik M, Zobel M, Vasar M, Metsis M, Moora M (2012) Communities of arbuscular mycorrhizal fungi detected in forest soil are spatially heterogeneous but do not vary throughout the growing season. PLoS ONE 7, e41938CrossRefPubMedPubMedCentralGoogle Scholar
  15. De Cáceres M, Legendre P (2009) Associations between species and groups of sites: indices and statistical inference. Ecology 90:3566–3574CrossRefPubMedGoogle Scholar
  16. De Souza FA, Declerck S (2003) Mycelium development and architecture, and spore production of Scutellospora reticulata in monoxenic culture with Ri T-DNA transformed carrot roots. Mycologia 95:1004–1012CrossRefPubMedGoogle Scholar
  17. Denison RF, Kiers ET (2011) Life histories of symbiotic rhizobia and mycorrhizal fungi. Curr Biol 21:775–785CrossRefGoogle Scholar
  18. Diaz G, Honrubia M (1994) A mycorrhizal survey of plants growing on mine wastes in Southeast Spain. Arid Land Res Manag 8:59–68CrossRefGoogle Scholar
  19. Doncaster CC (1962) Nematode feeding mechanisms. 1. Observations on Rhabditis and Pelodera. Nematologica 8:313–320CrossRefGoogle Scholar
  20. Dumbrell AJ, Ashton PD, Aziz N, Feng G, Nelson M, Dytham C, Fitter AH, Helgason T (2011) Distinct seasonal assemblages of arbuscular mycorrhizal fungi revealed by massively parallel pyrosequencing. New Phytol 190:794–804CrossRefPubMedGoogle Scholar
  21. Fitzjohn RG, Dickie IA (2007) TRAMPR: AN R package for analysis and matching of terminal restriction fragment length polymorphism (TRFLP) profiles. Mol Ecol Notes 7:583–587CrossRefGoogle Scholar
  22. Gerdemann JW, Nicolson TH (1963) Spores of mycorrhizal Endogone species extracted from the soil by wet sieving and decanting. T Br Mycol Soc 46:235–244CrossRefGoogle Scholar
  23. Grabherr G, Nagy L, Thompson O (2003) An outline of Europe’s alpine areas. In: Nagy L, Grabherr G, Korner Ch, Thompson OBA (eds) Alpine biodiversity in Europe. Ecological Series Berlin, Heidelberg Springer 167:3–12Google Scholar
  24. Gryndler M, Hršelová H, Cajthaml T, Havránková M, Řezáčová V, Gryndlerová H, Larsen J (2009) Influence of soil organic matter decomposition on arbuscular mycorrhizal fungi in terms of asymbiotic hyphal growth and root colonization. Mycorrhiza 19:255–266CrossRefPubMedGoogle Scholar
  25. Hart MM, Reader JR (2002) Taxonomic basis for variation in the colonization strategy of arbuscular mycorrhizal fungi. New Phytol 153:335–344CrossRefGoogle Scholar
  26. Hart MM, Reader JR, Klironomos JN (2001) Life-history strategies of arbuscular mycorrhizal fungi in relation to their successional dynamics. Mycologia 93:1186–1194CrossRefGoogle Scholar
  27. Helgason T, Merryweather JW, Denison J, Wilson P, Young JPW, Fitter AH (2002) Selectivity and functional diversity in arbuscular mycorrhizas of co-occurring fungi and plants from a temperate deciduous woodland. J Ecol 90:371–384CrossRefGoogle Scholar
  28. Hempel S, Renker C, Buscot F (2007) Differences in the species composition of arbuscular mycorrhizal fungi in spore, root and soil communities in a grassland ecosystem. Environ Microbiol 9:1930–1938CrossRefPubMedGoogle Scholar
  29. Hetrick BAD, Bloom J (1986) The influence of host plant on production and colonization ability of vesicular-arbuscular mycorrhizal spores. Mycologia 78:32–36CrossRefGoogle Scholar
  30. Holland SM (2008) Analytic Rarefaction 1.3. Available at http://strata.uga.edu/software/anRareReadme.html
  31. Joner EJ, Jakobsen I (1995) Growth and extracellular phosphatase activity of arbuscular mycorrhizal hyphae as influenced by soil organic matter. Soil Biol Biochem 27:1153–1159CrossRefGoogle Scholar
  32. Jung SC, Martínez-Medina A, López-Ráez JA, Pozo MJ (2012) Mycorrhiza induced resistance and priming of plant defenses. J Chem Ecol 38:651–664CrossRefPubMedGoogle Scholar
  33. Kaiser C, Kilburn MR, Clode PL, Fuchslueger L, Koranda M et al (2015) Exploring the transfer of recent plant photosynthates to soil microbes: mycorrhizal pathway vs direct root exudation. New Phytol 205:1537–1551CrossRefPubMedGoogle Scholar
  34. Kjøller R, Rosendahl S (2000) Detection of arbuscular mycorrhizal fungi (Glomales) in roots by nested PCR and SSCP (Single Strand Conformation Polymorphism). Plant Soil 226:189–196CrossRefGoogle Scholar
  35. Klironomos JN, Hart MM (2002) Colonization of roots by arbuscular mycorrhizal fungi using different sources of inoculum. Mycorrhiza 12:181–184CrossRefPubMedGoogle Scholar
  36. Koide RT, Mosse B (2004) A history of research on arbuscular mycorrhiza. Mycorrhiza 14:145–163CrossRefPubMedGoogle Scholar
  37. Lee J, Lee S, Young JPW (2008) Improved PCR primers for the detection and identification of arbuscular mycorrhizal fungi. FEMS Microbiol Ecol 65:339–349CrossRefPubMedGoogle Scholar
  38. Leifheit EF, Veresoglou SD, Lehmann A et al (2014) Multiple factors influence the role of arbuscular mycorrhizal fungi in soil aggregation—a meta-analysis. Plant Soil 374:523–537CrossRefGoogle Scholar
  39. Li LF, Li T, Zhang Y, Zhao ZW (2010) Molecular diversity of arbuscular mycorrhizal fungi and their distribution patterns related to host-plants and habitats in a hot and arid ecosystem, southwest China. FEMS Microbiol Ecol 71:418–427CrossRefPubMedGoogle Scholar
  40. Liu Y, He L, An LZ, Helgason T, Feng HY (2009) Arbuscular mycorrhizal dynamics in a chronosequence of Caragana korshinskii plantations. FEMS Microbiol Ecol 67:81–92CrossRefPubMedGoogle Scholar
  41. López-García A, Azcón-Aguilar C, Barea JM (2014a) The interactions between plant life form and fungal traits of arbuscular mycorrhizal fungi determine the symbiotic community. Oecologia 176:1075–1086CrossRefPubMedGoogle Scholar
  42. López-García A, Palenzuela J, Barea JM, Azcón-Aguilar C (2014b) Life-history strategies of arbuscular mycorrhizal fungi determine succession into roots of Rosmarinus officinalis L., a characteristic woody perennial plant species from Mediterranean ecosystems. Plant Soil 379:247–270CrossRefGoogle Scholar
  43. López-Sánchez ME, Honrubia M (1992) Seasonal variation of vesicular-arbuscular mycorrhizae in eroded soils from southern Spain. Mycorrhiza 2:33–39CrossRefGoogle Scholar
  44. Lumini E, Orgiazzi A, Borriello R, Bonfante P, Bianciotto V (2010) Disclosing arbuscular mycorrhizal fungal biodiversity in soil through a land-use gradient using a pyrosequencing approach. Environ Microbiol 12:2165–2179PubMedGoogle Scholar
  45. Mandyam K, Jumpponen A (2008) Seasonal and temporal dynamics of arbuscular mycorrhizal and dark septate endophytic fungi in a tall grass prairie ecosystem are minimally affected by nitrogen enrichment. Mycorrhiza 18:145–155CrossRefPubMedGoogle Scholar
  46. Martínez-García LB, Armas C, Miranda JD, Padilla FM, Pugnaire FI (2011) Shrubs influence arbuscular mycorrhizal fungi communities in a semi-arid environment. Soil Biol Biochem 43:682–689CrossRefGoogle Scholar
  47. Martínez-García LB, Richardson SJ, Tylianakis JM, Peltzer DA, Dickie IA (2015) Host identity is a dominant driver of mycorrhizal fungal community composition during ecosystem development. New Phytol 205:1565–1576CrossRefPubMedGoogle Scholar
  48. Martiny JBH, Bohannan BJ, Brown JH, Colwell RK, Fuhrman JA et al (2006) Microbial biogeography: putting microorganisms on the map. Nat Rev Microbiol 4:102–112CrossRefPubMedGoogle Scholar
  49. Mayr R, Godoy R (1989) Seasonal patterns in vesicular–arbuscular mycorrhiza in Melic-Beech Forest. Agric Ecosyst Environ 29:281–288CrossRefGoogle Scholar
  50. Mcardle BH, Anderson MJ (2001) Fitting multivariate models to community data: a comment on distance-based redundancy analysis. Ecology 82:290–297CrossRefGoogle Scholar
  51. Mcgonigle TP, Miller MH, Evans DG, Fairchild GL, Swan JA (1990) A new method which gives an objective measure of colonization of roots by vesicular-arbuscular mycorrhizal fungi. New Phytol 115:495–501CrossRefGoogle Scholar
  52. Munkvold L, Kjoller R, Vestberg M, Rosendahl S, Jakobsen I (2004) High functional diversity within species of arbuscular mycorrhizal fungi. New Phytol 164:357–364CrossRefGoogle Scholar
  53. Oehl F, Sieverding E, Ineichen K, Mäder P, Wiemken A, Boller T (2009) Distinct sporulation dynamics of arbuscular mycorrhizal fungal communities from different agroecosystems in long-term microcosms. Agric Ecosyst Environ 134:257–268CrossRefGoogle Scholar
  54. Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR, O’Hara RB, Simpson GL, Solymos P, Henry M, Stevens H, Wagner H (2015) Vegan: community ecology package. R package version 2.3-1. Available at http://CRAN.R-project.org/package=vegan
  55. Öpik M, Moora M, Liira J, Zobel M (2006) Composition of root-colonizing arbuscular mycorrhizal fungal communities in different ecosystems around the globe. J Ecol 94:778–790CrossRefGoogle Scholar
  56. Öpik M, Moora M, Zobel M, Saks Ü, Wheatley R, Wright F, Daniell TJ (2008) High diversity of arbuscular mycorrhizal fungi in a boreal, herb rich, coniferous forest. New Phytol 179:867–876CrossRefPubMedGoogle Scholar
  57. Öpik M, Metsis M, Daniell TJ, Zobel M, Moora M (2009) Large-scale parallel 454 sequencing reveals host ecological group specificity of arbuscular mycorrhizal fungi in a boreonemoral forest. New Phytol 184:424–437CrossRefPubMedGoogle Scholar
  58. Öpik M, Vanatoa A, Vanatoa E, Moora M, Davison J, Kalwij JM, Reier Ü, Zobel M (2010) The online database MaarjAM reveals global and ecosystemic distribution patterns in arbuscular mycorrhizal fungi (Glomeromycota). New Phytol 188:223–241CrossRefPubMedGoogle Scholar
  59. Phillips JM, Hayman DS (1970) Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. T Br Mycol Soc 55:158–161CrossRefGoogle Scholar
  60. Powell JR, Parrent JL, Hart MM, Klironomos JN, Rillig MC, Maherali H (2009) Phylogenetic trait conservatism and the evolution of functional trade-offs in arbuscular mycorrhizal fungi. P Roy Soc B-Biol Sci 276:4237–4245CrossRefGoogle Scholar
  61. Pozo MJ, Lopez-Raez JA, Azcon-Aguilar C, García-Garrido JM (2015) Phytohormones as integrators of environmental signals in the regulation of mycorrhizal symbioses. New Phytol 205:1431–1436CrossRefPubMedGoogle Scholar
  62. Redford AJ, Bowers RM, Knight R, Linhart Y, Fierer N (2010) The ecology of the phyllosphere: geographic and phylogenetic variability in the distribution of bacteria on tree leaves. Environ Microbiol 12:2885–2893CrossRefPubMedPubMedCentralGoogle Scholar
  63. Rillig MC, Mummey DL (2006) Mycorrhizas and soil structure. New Phytol 171:41–53CrossRefPubMedGoogle Scholar
  64. Rodríguez-Echeverría S, Gera Hol WH, Freitas H, Eason, Cook R (2008) Arbuscular mycorrhizal fungi of Ammophila arenaria (L.) Link: spore abundance and root colonisation in six locations of the European coast. Eur J Soil Biol 44:30–36CrossRefGoogle Scholar
  65. Royston P, Remark AS (1995) R94: a remark on Algorithm AS 181: the W test for normality. Appl Stat 44:547–551CrossRefGoogle Scholar
  66. Russo SE, Legge R, Weber KA, Brodie EL, Goldfarb KC, Benson AK, Tan S (2012) Bacterial community structure of contrasting soils underlying Bornean rain forests: inferences from microarray and next-generation sequencing methods. Soil Biol Biochem 55:48–59CrossRefGoogle Scholar
  67. Sánchez-Castro I, Ferrol N, Cornejo P, Barea JM (2012) Temporal dynamics of arbuscular mycorrhizal fungi colonizing roots of representative shrub species in a semi-arid Mediterranean ecosystem. Mycorrhiza 22:449–460CrossRefPubMedGoogle Scholar
  68. Santos-Gonzalez JC, Finlay RD, Tehler A (2007) Seasonal dynamics of arbuscular mycorrhizal fungal communities in roots in a seminatural grassland. Appl Environ Microbiol 73:5613–5623CrossRefPubMedPubMedCentralGoogle Scholar
  69. Sikes BA, Maherali H, Klironomos JN (2014) Mycorrhizal fungal growth responds to soil characteristics, but not host plant identity, during a primary lacustrine dune succession. Mycorrhiza 24:219–226CrossRefPubMedGoogle Scholar
  70. Simon L, Lalonde M, Bruns TD (1992) Specific amplification of 18S fungal ribosomal genes from vesicular–arbuscular endomycorrhizal fungi colonizing roots. Appl Environ Microbiol 58:291–295PubMedPubMedCentralGoogle Scholar
  71. Sivakumar N (2013) Effect of edaphic factors and seasonal variation on spore density and root colonization of arbuscular mycorrhizal fungi in sugarcane fields. An Microbiol 63:151–160CrossRefGoogle Scholar
  72. Smith SE, Read DJ (2008) Mycorrhizal Symbiosis. Academic, AmsterdamGoogle Scholar
  73. Smith SE, Facelli E, Pope S, Smith FA (2010) Plant performance in stressful environments: interpreting new and established knowledge of the roles of arbuscular mycorrhizas. Plant Soil 326:3–20CrossRefGoogle Scholar
  74. Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599CrossRefPubMedGoogle Scholar
  75. Tichy L, Chytry M (2006) Statistical determination of diagnostic species for site groups of unequal size. J Veg Sci 17:809–818CrossRefGoogle Scholar
  76. van der Heijden MGA, Boller T, Wiemken A, Sanders IR (1998a) Different arbuscular mycorrhizal fungal species are potential determinants of plant community structure. Ecology 79:2082–2091CrossRefGoogle Scholar
  77. van der Heijden MGA, Klironomos JN, Ursic M, Moutoglis P, Streitwolf-Engel R, Boller T, Wiemken A, Sanders IR (1998b) Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity. Nature 396:69–72CrossRefGoogle Scholar
  78. van der Heijden MGA, Scheublin TR, Brader A (2004) Taxonomic and functional diversity in arbuscular mycorrhizal fungi–is there any relationship? New Phytol 164:201–204CrossRefGoogle Scholar
  79. van der Heijden MGA, Bardgett RD, van Straalen NM (2008) The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecol Lett 11:296–310CrossRefPubMedGoogle Scholar
  80. van der Heijden MGA, Martin FM, Selosse MA, Sanders I (2015) Mycorrhizal ecology and evolution: the past, the present, and the future. New Phytol 205:1406–1423CrossRefPubMedGoogle Scholar
  81. Vandenkoornhuyse P, Ridgway KP, Watson IJ, Fitter AH, Young JPW (2003) Co-existing grass species have distinctive arbuscular mycorrhizal communities. Mol Ecol 12:3085–3095CrossRefPubMedGoogle Scholar
  82. Varela-Cervero S, Vasar M, Davison J, Barea JM, Öpik M, Azcón-Aguilar C (2015) The composition of arbuscular mycorrhizal fungal communities differs among the roots, spores and extraradical mycelia associated with five Mediterranean plant species. Environ Microbiol 17:2882–2895CrossRefPubMedGoogle Scholar
  83. Vogelsang KM, Reynolds HL, Bever JD (2006) Mycorrhizal fungal identity and richness determine the diversity and productivity of a tallgrass prairie system. New Phytol 172:554–562CrossRefPubMedGoogle Scholar
  84. Yang H, Zang Y, Yuan Y, Tang J, Chen X (2012) Selectivity by host plants affects the distribution of arbuscular mycorrhizal fungi: evidence from ITS rDNA sequence metadata. BMC Evol Biol 12:50–62CrossRefPubMedPubMedCentralGoogle Scholar
  85. Zangaro W, Rostirola L, Souza P, Almeida AR, Lescano L, Rondina A, Nogueira M, Carrenho R (2013) Root colonization and spore abundance of arbuscular mycorrhizal fungi in distinct successional stages from an Atlantic rainforest biome in southern Brazil. Mycorrhiza 23:221–233CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Sara Varela-Cervero
    • 1
  • Álvaro López-García
    • 1
  • José M. Barea
    • 1
  • Concepción Azcón-Aguilar
    • 1
  1. 1.Departamento de Microbiología del Suelo y Sistemas SimbióticosEstación Experimental del Zaidín, CSICGranadaSpain

Personalised recommendations