Skip to main content


Log in

Opportunity costs for maize associated with localised application of sewage sludge derived fertilisers, as indicated by early root and phosphorus uptake responses

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript



Phosphorus recycling from waste and localised placement of fertilisers can potentially improve sustainable P management in agriculture. However, knowledge about root and plant P uptake responses to placement of complex waste-derived fertilisers is lacking.


Sewage sludge (SS) and sewage sludge ash (ASH) were tested against triple superphosphate (TSP) in a rhizobox setup where maize shoot and root growth and architecture were followed for 30 days. The three P sources were either mixed homogenously into the soil (slightly acidic, low in available P and moderate P fixing capacity; labelled with 33P) or localised in a patch close to the seed.


Localisation of TSP and SS both induced increased root length density in and around the fertiliser patch. For TSP this was followed by enhanced dry matter yield and fertiliser P uptake compared to the mixed source. In contrast, P uptake from SS was not enhanced by the localisation, and while the uptake from the seed was similar, the uptake from soil was lower probably due to weaker root development in the remaining soil. No root response was found for localised ASH, whereas mixed ASH more than doubled dry matter yield and P uptake in comparison.


Young maize plants’ responses to fertiliser localisation imply opportunity costs and under the given soil conditions, localisation of SS and ASH (contrary to TSP) did not entail an overall benefit for the plant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others



Triple super phosphate


Sewage sludge


Sewage sludge ash

TSPloc and TSPmix :

Treatments with localised and mixed triple super phosphate respectively.

SSloc and SSmix :

Treatments with localised and mixed sewage sludge respectively.

ASHloc and ASHmix :

Treatments with localised and mixed sewage sludge ash respectively.


Control treatment with no amendment of P.


P derived from.


P uptake efficiency of the roots


Days after sowing.


  • Achat DL, Daumer M-L, Sperandio M et al (2014) Solubility and mobility of phosphorus recycled from dairy effluents and pig manures in incubated soils with different characteristics. Nutr Cycl Agroecosyst 99:1–15. doi:10.1007/s10705-014-9614-0

    Article  Google Scholar 

  • Bergmann W, Neubert P (1976) Pflanzendiagnose und pflanzenanalyse. Zur ermittlung von ernährungsstörungen und des ernährungszustandes der kulturpflanzen

  • Bierman PM, Rosen CJ, Bloom PR, Nater EA (1995) Soil solution chemistry of sewage-sludge incinerator ash and phosphate fertilizer amended soil. J Environ Qual 24:279. doi:10.2134/jeq1995.00472425002400020010x

    Article  CAS  Google Scholar 

  • Bisseling T, Scheres B (2014) Nutrient computation for root architecture. Science 346:300–301. doi:10.1126/science.1260942

    Article  CAS  PubMed  Google Scholar 

  • Bittman S, Liu A, Hunt DE et al (2012) Precision placement of separated dairy sludge improves early phosphorus nutrition and growth in corn (Zea mays L.). J Environ Qual 41:582–591. doi:10.2134/jeq2011.0284

    Article  CAS  PubMed  Google Scholar 

  • Bramley H, Tyerman SD, Turner DW, Turner NC (2011) Root growth of lupins is more sensitive to waterlogging than wheat. Funct Plant Biol 38:910–918. doi:10.1071/FP11148

    Article  CAS  Google Scholar 

  • Britto DT, Kronzucker HJ (2002) NH4+ toxicity in higher plants: a critical review. J Plant Physiol 159:567–584. doi:10.1078/0176-1617-0774

    Article  CAS  Google Scholar 

  • Chassot A, Richner W (2002) Root characteristics and phosphorus uptake of maize seedlings in a bilayered soil. Agron J 94:118–127. doi:10.2134/agronj2002.1180

    Article  Google Scholar 

  • Cohen Y (2009) Phosphorus dissolution from ash of incinerated sewage sludge and animal carcasses using sulphuric acid. Environ Technol 30:1215–1226. doi:10.1080/09593330903213879

    Article  CAS  PubMed  Google Scholar 

  • Desnos T (2008) Root branching responses to phosphate and nitrate. Curr Opin Plant Biol 11:82–87. doi:10.1016/j.pbi.2007.10.003

    Article  CAS  PubMed  Google Scholar 

  • Drew M (1975) Comparison of the effects of a localized supply of phosphate, nitrate, ammonium and potassium on the growth of the seminal root system, and the shoot, in barley. New Phytol 75:479–490

    Article  CAS  Google Scholar 

  • Fardeau JC, Guiraud G, Marol C (1996) The role of isotopic techniques on the evaluation of the agronomic effectiveness of P fertilizers. Fertil Res 45:101–109. doi:10.1007/BF00790659

    Article  Google Scholar 

  • Fransen B, de Kroon H, de Kovel CGF, van den Bosch F (1999) Disentangling the effects of root foraging and inherent growth rate on plant biomass accumulation in heterogeneous environments: A modelling study. Ann Bot 84:305–311. doi:10.1006/anbo.1999.0921

    Article  Google Scholar 

  • Frei OM (2000) Changes in yield physiology of corn as a result of breeding in northern Europe. Maydica 45:173–183

    Google Scholar 

  • Frossard E, Dufour P, Sinaj S (1996a) Phosphorus in urban sewage sludges as assessed by isotopic exchange. Soil Sci Soc Am J 60:179

    Article  CAS  Google Scholar 

  • Frossard E, Sinaj S, Zhang L-M, Morel JL (1996b) The fate of sludge phosphorus in soil-plant systems. Soil Sci Soc Am J 60:1248–1253

    Article  CAS  Google Scholar 

  • Frossard E, Achat DL, Bernasconi SM, et al. (2011) The use of tracers to investigate phophate cycling in soil-plan systems. Bünemann E, Oberson A, Frossard E Phosphorus action Biol Process soil phosphorus cycling vol 100, Soil Biol Springer, Berlin 59–91. doi: 10.1007/978-3-642-15271-9

  • Gallet A, Flisch R, Ryser J-P et al (2003) Effect of phosphate fertilization on crop yield and soil phosphorus status. J Plant Nutr Soil Sci 166:568–578. doi:10.1002/jpln.200321081

    Article  CAS  Google Scholar 

  • Gerendas J, Zhu ZJ, Bendixen R et al (1997) Physiological and biochemical processes related to ammonium toxicity in higher plants. Z Pflanzenernahr Bodenkd 160:239–251. doi:10.1002/jpln.19971600218

    Article  CAS  Google Scholar 

  • Grant CA, Flaten DN, Tomasiewicz DJ, Sheppard SC (2001) The importance of early season phosphorus nutrition. Can J Plant Sci 81:211–224. doi:10.4141/P00-093

    Article  CAS  Google Scholar 

  • He Y, Liao H, Yan X (2003) Localized supply of phosphorus induces root morphological and architectural changes of rice in split and stratified soil cultures. Plant Soil 248:247–256. doi:10.1023/A:1022351203545

    Article  CAS  Google Scholar 

  • Hodge A (2004) The plastic plant: root responses to heterogeneous supplies of nutrients. New Phytol 162:9–24. doi:10.1111/j.1469-8137.2004.01015.x

    Article  Google Scholar 

  • Hund A, Fracheboud Y, Soldati A, Stamp P (2008) Cold tolerance of maize seedlings as determined by root morphology and photosynthetic traits. Eur J Agron 28:178–185. doi:10.1016/j.eja.2007.07.003

    Article  CAS  Google Scholar 

  • in ‘t Zandt D, Le Marié C, Kirchgessner N et al (2015) High-resolution quantification of root dynamics in split-nutrient rhizoslides reveals rapid and strong proliferation of maize roots in response to local high nitrogen. J Exp Bot 66:5507–5517

    Article  Google Scholar 

  • Jakobsen P, Willett I (1986) Comparisons of the fertilizing and liming properties of lime-treated sewage sludge with its incinerated ash. Fertil Res 9:187–197. doi:10.1007/BF01050345

    Article  CAS  Google Scholar 

  • Jing J, Rui Y, Zhang F et al (2010) Localized application of phosphorus and ammonium improves growth of maize seedlings by stimulating root proliferation and rhizosphere acidification. Field Crop Res 119:355–364. doi:10.1016/j.fcr.2010.08.005

    Article  Google Scholar 

  • Johnston AE, Poulton PR, Fixen PE, Curtin D (2014) Phosphorus: Its efficient use in agriculture, 1st ed. Adv Agron. doi:10.1016/B978-0-12-420225-2.00005-4

    Google Scholar 

  • Klinglmair M, Lemming C, Jensen LS et al (2015) Phosphorus in Denmark: National and regional anthropogenic flows. Resour Conserv Recycl. doi:10.1016/j.resconrec.2015.09.019

    Google Scholar 

  • Lauzon JD, Miller MH (1997) Comparative response of corn and soybean to seed-placed phosphorus over a range of soil test phosphorus. Commun Soil Sci Plant Anal 28:205–215. doi:10.1080/00103629709369785

    Article  CAS  Google Scholar 

  • Li H, Ma Q, Li H et al (2014) Root morphological responses to localized nutrient supply differ among crop species with contrasting root traits. Plant Soil 376:151–163. doi:10.1007/s11104-013-1965-9

    Article  CAS  Google Scholar 

  • Lu S, Miller MH (1993) Determination of the most efficient phosphorus placement for field-grown maize (Zea mays L.) in early growth stages. Can J Soil Sci 73:349–358. doi:10.4141/cjss93-037

    Article  CAS  Google Scholar 

  • Lynch JP (2007) Rhizoeconomics: the roots of shoot growth limitations. HortSci 42:1107–1109

    Google Scholar 

  • Lynch JP, Ho MD (2005) Rhizoeconomics: carbon costs of phosphorus acquisition. Plant Soil 269:45–56. doi:10.1007/s11104-004-1096-4

    Article  CAS  Google Scholar 

  • Matar AE, Brown SC (1989) Effect of rate and method of phosphate placement on productivity of durum wheat in mediterranean environments. Fertil Res 20:75–82. doi:10.1007/BF01055431

    Article  Google Scholar 

  • Mellbye ME, Hemphill DD, Volk VV (1982) Sweet corn growth on incinerated sewage sludge-amended soil. J Environ Qual 11:160. doi:10.2134/jeq1982.00472425001100020002x

    Article  CAS  Google Scholar 

  • Miljøministeriet (2013) Slambekendtgørelsen - Bekendtgørelse om anvendelse af affald til jordbrugsformål - BEK nr 1650 af 13/12/2006. 1–11

  • Mullins GL (1993) Cotton root growth as affected by P fertilizer placement. Fertil Res 34:23–26. doi:10.1007/BF00749956

    Article  CAS  Google Scholar 

  • Nagel KA, Putz A, Gilmer F et al (2012) GROWSCREEN-Rhizo is a novel phenotyping robot enabling simultaneous measurements of root and shoot growth for plants grown in soil-filled rhizotrons. Funct Plant Biol 39:891–904

    Article  Google Scholar 

  • Nanzer S, Oberson A, Berger L et al (2014a) The plant availability of phosphorus from thermo-chemically treated sewage sludge ashes as studied by 33P labeling techniques. Plant Soil 377:439–456. doi:10.1007/s11104-013-1968-6

    Article  CAS  Google Scholar 

  • Nanzer S, Oberson A, Huthwelker T et al (2014b) The molecular environment of phosphorus in sewage sludge ash: implications for bioavailability. J Environ Qual 43:1050. doi:10.2134/jeq2013.05.0202

    Article  CAS  PubMed  Google Scholar 

  • Neumann G, George TS, Plassard C (2009) Strategies and methods for studying the rhizosphere - the plant science toolbox. Plant Soil 321:431–456. doi:10.1007/s11104-009-9953-9

    Article  CAS  Google Scholar 

  • Neuschütz C, Stoltz E, Greger M (2006) Root penetration of sealing layers made of fly ash and sewage sludge. J Environ Qual 35:1260–1268. doi:10.2134/jeq2005.0229

    Article  PubMed  Google Scholar 

  • Oenema O, Chardon W, Ehlert P, et al. (2012) Phosphorus fertilisers from by-products and wastes. Proc 717, Int Fertil Soc Leek, UK 1–56

  • Ohno T, Zibilske LM (1991) Determination of low concentrations of phosphorus in soil extracts using malachite green. Soil Sci Soc Am J 55:892–895 doi:10.2136/sssaj1991.03615995005500030046x

  • Petersen J, Lemming C, Rubæk GH, Sørensen P (2013) Side-band injection of acidified cattle slurry as starter P-fertilization for maize seedlings. Vallez, G., Houot, S., Formisano, S., Cheviron, N., Revallier, A., Lepeuple, A.-S., Bacheley, H. Cambier, P. Recycl. Org. residues Agric. From waste Manag. to Ecosyst. Serv. B. Abstr. RAMIRAN 2013 - 15th

  • Pregitzer KS, Hendrick RL, Fogel R (1993) The demography of fine roots in response to patches of water and nitrogen. New Phytol 125:575–580. doi:10.1111/j.1469-8137.1993.tb03905.x

    Article  Google Scholar 

  • Pypers P, Loon L, Diels J et al (2006) Plant-available P for maize and cowpea in P-deficient soils from the Nigerian northern Guinea savanna – comparison of E- and L-values. Plant Soil 283:251–264. doi:10.1007/s11104-006-0016-1

    Article  CAS  Google Scholar 

  • R Development Core Team (2014) R: A language and environment for statistical computing. Vienna, Austria

  • Schröder JJ, ten Holte L, Brouwer G (1997) Response of silage maize to placement of cattle slurry. Neth J Agric Sci 45:249–261

    Google Scholar 

  • Ticconi CA, Abel S (2004) Short on phosphate: plant surveillance and countermeasures. Trends Plant Sci 9:548–555. doi:10.1016/j.tplants.2004.09.003

    Article  CAS  PubMed  Google Scholar 

  • Visser EJW, Bögemann GM, Smeets M et al (2008) Evidence that ethylene signalling is not involved in selective root placement by tobacco plants in response to nutrient-rich soil patches. New Phytol 177:457–465. doi:10.1111/j.1469-8137.2007.02256.x

    PubMed  Google Scholar 

  • Wang L, de Kroon H, Bögemann GM, Smits AJM (2005) Partial root drying effects on biomass production in brassica napus and the significance of root responses. Plant Soil 276:313–326. doi:10.1007/s11104-005-5085-z

    Article  CAS  Google Scholar 

  • Williamson LC (2001) Phosphate availability regulates root system architecture in arabidopsis. Plant Physiol 126:875–882. doi:10.1104/pp.126.2.875

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wissuwa M (2003) How do plants achieve tolerance to phosphorus deficiency? Small causes with big effects. Plant Physiol 133:1947–1958. doi:10.1104/pp.103.029306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Withers PJA, Peel S, Chalmers AG et al (2000) The response of manured forage maize to starter phosphorus fertilizer on chalkland soils in southern England. Grass Forage Sci 55:105–113. doi:10.1046/j.1365-2494.2000.00204.x

    Article  Google Scholar 

  • Withers PJA, Sylvester-Bradley R, Jones DL et al (2014) Feed the crop not the soil: rethinking phosphorus management in the food chain. Environ Sci Technol. doi:10.1021/es501670j

    Google Scholar 

  • Xu H, Zhang H, Shao L, He P (2011) Fraction distributions of phosphorus in sewage sludge and sludge ash. Waste Biomass Valoriz 3:355–361. doi:10.1007/s12649-011-9103-5

    Article  Google Scholar 

  • Yoshida H, Christensen TH, Guildal T, Scheutz C (2015) A comprehensive substance flow analysis of a municipal wastewater and sludge treatment plant. Chemosphere 138:874–882. doi:10.1016/j.chemosphere.2013.09.045

    Article  CAS  PubMed  Google Scholar 

  • Zhang H, Forde BG (2000) Regulation of Arabidopsis root development by nitrate availability. J Exp Bot 51:51–59. doi:10.1093/jexbot/51.342.51

    Article  CAS  PubMed  Google Scholar 

Download references


The authors would like to thank Sean Case for proofreading of the manuscript. The study was conducted as part of the research projects IRMAR (funded by the Danish Council for Strategic Research); RoCo (part of the Organic RDD 2 programme, which is coordinated by International Centre for Research in Organic Food Systems (ICROFS) and has received grants from the Green Growth and Development programme (GUDP) under the Danish Ministry of Food, Agriculture and Fisheries.); and IMPROVE-P (financial support for this project was provided by transnational funding bodies, being partners of the FP7 ERA-net project, CORE Organic Plus, and the cofund from the European commission).

Author information

Authors and Affiliations


Corresponding author

Correspondence to Jakob Magid.

Additional information

Responsible Editor: John Hammond.

Electronic supplementary material

Below is the link to the electronic supplementary material.


(DOCX 11709 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lemming, C., Oberson, A., Hund, A. et al. Opportunity costs for maize associated with localised application of sewage sludge derived fertilisers, as indicated by early root and phosphorus uptake responses. Plant Soil 406, 201–217 (2016).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: