Skip to main content
Log in

Homospermidine synthase contributes to salt tolerance in free-living Rhizobium tropici and in symbiosis with Phaseolus vulgaris

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Background and aims

Homospermidine is known to be the most abundant polyamine in root nodules of Phaseolus vulgaris induced by Rhizobium tropici. In addition, homospermidine is involved in the stress tolerance of fast-growing rhizobia and in the bacteroid protection from environmental changes. For that reason, in this work, we have investigated the role of the rhizobial homospermidine synthase in the response of P. vulgaris root nodules to salinity.

Materials and methods

A mutant strain of R. tropici impaired in the synthesis of homospermidine has been constructed (Rt hss::Ω, Spr) and the response to salinity of the free-living and symbiotic bacteria has been analyzed. Plants of P. vulgaris inoculated with the mutant strain were treated with 100 mM NaCl, and the concentration of polyamines was determined in different nodular fractions together with nitrogen fixation and gene expression of polyamine biosynthetic enzymes.

Results

Neither homospermidine nor 4-aminobutilcadaverine was detected in the free-living mutant bacteria and in nodules of plants inoculated with Rt hss::Ω, Spr. This strain was more sensitive to salinity than the wild type, and plants inoculated with the mutant bacteria had lower nodule fresh weight than with the wild type.

Conclusion

Homospermidine synthase contributes to salt stress in both free-living and symbiotic bacteria. Despite the synthesis of homospermidine, this enzyme produces also 4-aminobutilcadaverine. Based on the lower nodule fresh weight and plant biomass reduction induced by salinity in plants inoculated with the mutant strain, this enzyme seems to be involved in nodule organogenesis and salt tolerance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

ADC:

Arginine decarboxylase

4-Abcad:

4-Aminobutilcadaverine

Cad:

Cadaverine

Homspd:

Homospermidine

HSS:

Homospermidine synthase

ODC:

Ornithine decarboxylase

PAs:

Polyamines

Put:

Putrescine

Spd:

Spermidine

Spm:

Spermine

SPDS:

Spermidine synthase

SPMS:

Spermine synthase

References

  • Alcázar R, Cuevas JC, Patron M, Altabella T, Tiburcio AF (2006) Abscisic acid modulates polyamine metabolism under water stress in Arabidopsis thaliana. Physiol Plantarum 128:448–455. doi:10.1111/j.1399-3054.2006.00780.x

    Article  Google Scholar 

  • Bachrach U (2010) The early history of polyamine research. Plant Physiol Biochem 48:490–495. doi:10.1016/j.plaphy.2010.02.003

    Article  CAS  PubMed  Google Scholar 

  • Beringer JE (1974) R Factor transfer in Rhizobium leguminosarum. J Gen Microbiol 84:188–198

    CAS  PubMed  Google Scholar 

  • Birecka H, DiNolfo TE, Martin WB, Frohlich MW (1984) Polyamines and leaf senescence in pyrrolizidine alkaloid-bearing Heliotropium plants. Phytochemistry 23:991–997. doi:10.1016/s0031-9422(00)82598-4

    Article  CAS  Google Scholar 

  • Burris RH (1984) The fundamentals of nitrogen fixation—Postgate, JR. Am Sci 72:517–517

    Google Scholar 

  • Efrose RC, Flemetakis E, Sfichi L, Stedel C, Kouri ED, Udvardi MK, Kotzabasis K, Katinakis P (2008) Characterization of spermidine and spermine synthases in Lotus japonicus: induction and spatial organization of polyamine biosynthesis in nitrogen fixing nodules. Planta 228:37–49. doi:10.1007/s00425-008-0717-1

    Article  CAS  PubMed  Google Scholar 

  • Flores HE, Galston AW (1982) Analysis of polyamines in higher plants by high performance liquid chromatography. Plant Physiol 69:701–706. doi:10.1104/pp.69.3.701

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fujihara S (2009) Biogenic amines in rhizobia and legume root nodules. Microbes Environ 24:1–13. doi:10.1264/jsme2.ME08557

    Article  PubMed  Google Scholar 

  • Fujihara S, Yoneyama T (1993) Effects of pH and osmotic stress on cellular polyamine contents in the soybean rhizobia Rhizobium fredii P220 and Bradyrhizobium japonicum A1017. Appl Environ Microb 59:1104–1109

    CAS  Google Scholar 

  • Fujihara S, Abe H, Minakawa Y, Akao S, Yoneyama T (1994) Polyamines in nodules from various plant-microbe symbiotic associations. Plant Cell Physiol 35:1127–1134

    CAS  Google Scholar 

  • Fujihara S, Abe H, Yoneyama T (1995) A new polyamine 4-aminobutilcadaverine—occurrence and its biosynthesis in root nodules of adzuki bean plant Vigna angularis. J Biol Chem 270:9932–9938

    Article  CAS  PubMed  Google Scholar 

  • Hamana K, Minamisawa K, Matsuzaki S (1990) Polyamines in rhizobium, bradyrhizobium, azorhizobium and argobacterium. FEMS Microbiol Lett 71:71–76, http://dx.doi.org/10.1016/0378-1097(90)90034-N

    Article  CAS  Google Scholar 

  • Hernández-Lucero E, Ruiz O, Jiménez-Bremont JF (2008) Effect of salt stress on polyamine metabolism in two bean cultivars. Plant Stress 2:96–102

    Google Scholar 

  • Hummel I, Gouesbet G, El Amrani A, Aïnouche A, Couée I (2004) Characterization of the two arginine decarboxylase (polyamine biosynthesis) paralogues of the endemic subantarctic cruciferous species Pringlea antiscorbutica and analysis of their differential expression during development and response to environmental stress. Gene 342:199–209. doi:10.1016/j.gene.2004.08.024

    Article  CAS  PubMed  Google Scholar 

  • Hussain SS, Ali M, Ahmad M, Siddique KHM (2011) Polyamines: natural and engineered abiotic and biotic stress tolerance in plants. Biotechnol Adv 29:300–311. doi:10.1016/j.biotechadv.2011.01.003

    Article  CAS  PubMed  Google Scholar 

  • Lahiri K, Chattopadhyay S, Ghosh B (2004) Correlation of endogenous free polyamine levels with root nodule senescence in different genotypes in Vigna mungo L. J Plant Physiol 161:563–571, http://dx.doi.org/10.1078/0176-1617-01057

    Article  CAS  PubMed  Google Scholar 

  • Liu JH, Moriguchi T (2007) Changes in free polyamines and gene expression during peach flower development. Biol Plantarum 51:530–532. doi:10.1007/s10535-007-0114-9

    Article  CAS  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(T)(−Delta Delta C) method. Methods 25:402–408. doi:10.1006/meth.2001.1262

    Article  CAS  PubMed  Google Scholar 

  • Lopez-Gomez M, Hidalgo-Castellanos J, Iribarne C, Lluch C (2014a) Proline accumulation has prevalence over polyamines in nodules of Medicago sativa in symbiosis with Sinorhizobium meliloti during the initial response to salinity. Plant Soil 374: 149–159. doi: 10.1007/s11104-013-1871-1

  • López-Gómez M, Cobos-Porras L, Hidalgo-Castellanos J, Lluch C (2014b) Occurrence of polyamines in root nodules of Phaseolus vulgaris in symbiosis with Rhizobium tropici in response to salt stress. Phytochemistry 107: 32–41. doi: 10.1016/j.phytochem.2014.08.017

  • López-Gómez M, Hidalgo-Castellanos J, Iribarne C, Lluch C (2014b) Proline accumulation has prevalence over polyamines in nodules of Medicago sativa in symbiosis with Sinorhizobium meliloti during the initial response to salinity. Plant Soil 374: 149–159

  • Martínez-Romero E, Segovia L, Mercante FM, Franco AA, Graham P, Pardo MA (1991) Rhizobium tropici, a novel species nodulating Phaseolus vulgaris L. beans and Leucaena sp trees. Int J Syst Bacteriol 41:417–426

    Article  PubMed  Google Scholar 

  • Munro GF, Hercules K, Morgan J, Sauerbier W (1972) Dependence of the putrescine content of Escherichia coli on the osmotic strength of the medium. J Biol Chem 247:1272–1280

    CAS  PubMed  Google Scholar 

  • Ober D, Hartmann T (1999) Homospermidine synthase, the first pathway-specific enzyme of pyrrolizidine alkaloid biosynthesis, evolved from deoxyhypusine synthase. Proc Natl Acad Sci U S A 96:14777–14782. doi:10.1073/pnas.96.26.14777

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pegg AE (2006) Regulation of ornithine decarboxylase. J Biol Chem 281:14529–14532. doi:10.1074/jbc.R500031200

    Article  CAS  PubMed  Google Scholar 

  • Poole PS, Schofield NA, Reid CJ, Drew EM, Walshaw DL (1994) Identification of chromosomal genes located downstream of dctD that affect the requirement for calcium and the lipopolysaccharide layer of Rhizobium leguminosarum. Microbiology 140:2797–2809

    Article  CAS  PubMed  Google Scholar 

  • Prentki P, Krisch HM (1984) In vitro insertional mutagenesis with a selectable DNA fragment. Gene 29:303–313. doi:10.1016/0378-1119(84)90059-3

    Article  CAS  PubMed  Google Scholar 

  • Puppo A, Rigaud J (1975) Indole-3-acetic-acid (IAA) oxidation by leghemoglobin from soybean nodules. Physiol Plantarum 35:181–185. doi:10.1111/j.1399-3054.1975.tb03889.x

    Article  CAS  Google Scholar 

  • Quandt J, Hynes MF (1993) Versatile suicide vectors which allow direct selection for gene replacement in Gram-negative bacteria. Gene 127:15–21. doi:10.1016/0378-1119(93)90611-6

    Article  CAS  PubMed  Google Scholar 

  • Ray R, Bhattacharya S, Bavaria M, Viar M, Johnson L (2014) Spermidine, a sensor for antizyme 1 expression regulates intracellular polyamine homeostasis. Amino Acids 46:2005–2013. doi:10.1007/s00726-014-1757-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual, 3rd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY. Cold Spring Harbor Laboratory Press

    Google Scholar 

  • Shamseldin A, Nyalwidhe J, Werner D (2006) A proteomic approach towards the analysis of salt tolerance in Rhizobium etli and Sinorhizobium meliloti Strains. Curr Microbiol 52:333–339. doi:10.1007/s00284-005-6472-7

    Article  CAS  PubMed  Google Scholar 

  • Shaw FL, Elliott KA, Kinch LN, Fuell C, Phillips MA, Michael AJ (2010) Evolution and multifarious horizontal transfer of an alternative biosynthetic pathway for the alternative polyamine sym-homospermidine. J Biol Chem 285:14711–14723. doi:10.1074/jbc.M110.107219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shi H, Chan Z (2014) Improvement of plant abiotic stress tolerance through modulation of the polyamine pathway. J Integr Plant Biol 56:114–121. doi:10.1111/jipb.12128

    Article  CAS  PubMed  Google Scholar 

  • Trinchant JC, Boscari A, Spermato G, Van de Sype G, Le Rudulier D (2004) Proline betaine accumulation and metabolism in alfalfa plants under sodium chloride stress. Exploring its compartmentalization in nodules. Plant Physiol 135:1583–1594. doi:10.1104/pp.103.037556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vauclare P, Bligny R, Gout E, De Meuron V, Widmer F (2010) Metabolic and structural rearrangement during dark-induced autophagy in soybean (Glycine max L.) nodules: an electron microscopy and 31P and 13C nuclear magnetic resonance study. Planta 231:1495–1504. doi:10.1007/s00425-010-1148-3

    Article  CAS  PubMed  Google Scholar 

  • Witty JF, Minchin FR (1998) Hydrogen measurements provide direct evidence for a variable physical barrier to gas diffusion in legume nodules. J Exp Bot 49:1015–1020. doi:10.1093/jexbot/49.323.1015

    Article  CAS  Google Scholar 

  • Yoneyama T, Fujihara S, ) KY (1998) Natural abundance of 15N in amino acids and polyamines from leguminous nodules: unique 15N enrichment in homospermidine. J Exp Bot 49: 521-526. doi: 10.1093/jxb/49.320.521.

Download references

Acknowledgments

This work has been supported by the Andalusian Research Program (AGR-139), the Spanish Ministry of Science and Technology (Grant: AGL2009-09223), and the research program of the University of Granada (Estancias Breves 2014).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miguel López-Gómez.

Additional information

Responsible Editor: Katharina Pawlowski.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Figure 1S

Elution profile of polyamines in (A) Rthss::Ω, Spr, (B) R. tropici CIAT899 (Wt) and (C) standard polyamines. Polyamines were extracted and derivatized with dansyl chloride before subjecting to HPLC analysis. 1,7-diaminoheptane was used as internal standard (IS). Peaks in panel C: Put; putrescine, Cad; cadaverine, Spd; spermidine, Homspd; homospermidine, Spm; spermine. (PDF 143 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

López-Gómez, M., Cobos-Porras, L., Prell, J. et al. Homospermidine synthase contributes to salt tolerance in free-living Rhizobium tropici and in symbiosis with Phaseolus vulgaris . Plant Soil 404, 413–425 (2016). https://doi.org/10.1007/s11104-016-2848-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-016-2848-7

Keywords

Navigation