Skip to main content

Zinc (Zn) concentration of bread wheat grown under Mediterranean conditions as affected by genotype and soil/foliar Zn application

Abstract

Background and aims

The combination of plant breeding and agronomic biofortification is the most reasonable approach to minimize zinc (Zn) deficiency-related problems in humans, but also in crop production. However, its efficiency and suitability under Mediterranean conditions and its effects on the grain yield and quality parameters are not well known.

Methods

Field experiments were conducted over two years in south-eastern Portugal, where soils are deficient in Zn. Ten advanced breeding lines and three commercial varieties of bread-making wheat were fertilized with four Zn treatments as following: i) control, ii) soil Zn application, iii) foliar Zn application and iv) both soil and foliar Zn application.

Results

Low rainfall produced 46 % more of grain Zn concentration but about 67 % less of grain yield. Grain Zn concentration varied greatly across treatments and cultivars with INIAV-1, INIAV-6, INIAV-9 and the commercial varieties being the most efficient. There were no significant increases in Zn concentrations due to soil Zn application, but gains higher than 20 mg kg−1 were obtained both with foliar and soil+foliar Zn applications. Grain yield was not significantly higher in foliar application, but increased to about 10 % in soil, and about 7 % in soil+foliar applications, respectively.

Conclusions

In soils with low Zn availability, the best strategy to improve grain Zn concentrations has been to select the most efficient cultivars for Zn accumulation with the added application of Zn in soil+foliar form.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  • Alloway BJ (2009) Soil factors associated with zinc deficiency in crops and humans. Environ Geochem Health 31:537–548. doi:10.1007/s10653-009-9255-4

    CAS  Article  PubMed  Google Scholar 

  • Bagci SA, Ekiz H, Yilmaz Z, Cakmak I (2007) Effects of zinc deficiency and drought on grain yield of field-grown wheat cultivars in Central Anatolia. J Agron Crop Sci 193:198–206. doi:10.1111/j.1439-037X.2007.00256.x

    CAS  Article  Google Scholar 

  • Bouis HE, Hotz C, McClafferty B, Meenakshi JV, Pfeiffer WH (2011) Biofortification: a new tool to reduce micronutrient malnutrition. Food Nutr Bull 32:S31–S40. doi:10.1079/9781780642994.0202

    Article  PubMed  Google Scholar 

  • Brown KM, Rivera JA, Bhutta ZA, Gibson RS, King JC, Lönnerdal B, Lonnerdal B, Ruel MT, Sandtrom B, Wasantwisut E, Hotz C (2004) International zinc nutrition consultative group (IZiNCG) technical document 1. Assessment of the risk of zinc deficiency in populations and options for its control. Food Nutr Bull 25:S99–S203. doi:10.4067/S0717-75182010000200014

    Article  PubMed  Google Scholar 

  • Cakmak I (2000) Role of zinc in protecting plant cells from reactive oxygen species. New Phytol 146:185–205

    CAS  Article  Google Scholar 

  • Cakmak I (2008) Enrichment of cereal grains with Zinc: agronomic or genetic biofortification? Plant Soil 302:1–17. doi:10.1007/s11104-007-9466-3

    CAS  Article  Google Scholar 

  • Cakmak I, Marschner H, Bangerth F (1989) Effect of zinc nutritional status on growth, protein metabolism and level of indole-3-acetic acid and other phytohormones in bean (Phaseolus vulgaris L.). J Exp Bot 40(3):405–412. doi:10.1093/jxb/40.3.405

    CAS  Article  Google Scholar 

  • Cakmak I, Yilmaz A, Kalayi M, Ekiz H, Torun B, Erenoglu B, Braun HJ (1996) Zinc deficiency as a critical problem in wheat production in Central Anatolia. Plant Soil 180:165–172. doi:10.1007/BF00015299

    CAS  Article  Google Scholar 

  • Cakmak I, Torum A, Millet E, Feldman M, Fahima T, Korol A, Nevo E, Braun HJ, Ozkan H (2004) Triticum dicoccoides: an important genetic resource for increasing zinc and iron concentration in modern cultivated wheat. Soil Sci Plant Nutr 50:1047–1054. doi:10.1080/00380768.2004.10408573

    CAS  Article  Google Scholar 

  • Cakmak I, Pfeiffer WH, McClafferty B (2010a) Biofortification of durum wheat with zinc and iron. Cereal Chem 87:10–20. doi:10.1094/CCHEM-87-1-0001

    CAS  Article  Google Scholar 

  • Cakmak I, Kalayci M, Kaya Y, Torun AA, Aydin N, Wang Y, Arisoy Z, Erdem H, Yazici A, Gokmen O, Ozturk L, Horst WJ (2010b) Biofortification and localization of zinc in wheat grain. J Agr Food Chem 58:9092–9102. doi:10.1021/jf101197h

    CAS  Article  Google Scholar 

  • Cousins RJ (1998) A role of zinc in the regulation of gene expression. Proc Nutr Soc 57:307–311

    CAS  Article  PubMed  Google Scholar 

  • Dick JW, Quick JS (1983) A modified screening test for rapid estimation of gluten strength in early-generation wheat breeding lines. Cereal Chem 60:315–318

    Google Scholar 

  • Eagling T, Neal AL, McGrath SP, Fairweather-Tait SJ, Shewry PR, Zhao FJ (2014) Distribution and speciation of iron and zinc in grain of two wheat genotypes. J Agric Food Chem 62:708–716. doi:10.1021/jf403331p

    CAS  Article  PubMed  Google Scholar 

  • FEN, Fundación Española de Nutrición (2007) ‘Valoración de la dieta española de acuerdo al Panel de Consumo Alimentario’. (Ministerio de Agricultura. Pesca y Medio Marino: Madrid)

  • Fraker PJ, King LE, Laakko T, Vollmer TL (2000) The dynamic link between the integrity of the immune system and zinc status. J Nutr 130:1399S–1406S

    CAS  PubMed  Google Scholar 

  • Galinha C, Freitas MC, Pacheco A (2013) Elemental characterization of bread and durum wheat by instrumental neutro activation analysis. J Radioanal Nucl Chem 297:221–226. doi:10.1007/s10967-012-2368-8

    CAS  Article  Google Scholar 

  • Ghasemi S, Khoshgoftarmanesh AH, Afyuni M, Hadadzadeh H (2013) The effectiveness of foliar applications of synthesized zinc-amino acid chelates in comparison with zinc sulphate to increase yield and grain nutritional quality of wheat. Eur J Agron 45:68–74. doi:10.1016/j.eja.2012.10.012

    CAS  Article  Google Scholar 

  • Gómez-Becerra HF, Erdem H, Yazici A, Tutus Y, Torun B, Ozturk I, Cakmak I (2010) Grain concentrations of protein and mineral nutrients in a large collection of spelt wheat grown under different environments. J Cereal Sci 52:342–349. doi:10.1016/j.jcs.2010.05.003

    Article  Google Scholar 

  • Graham RD, Ascher JS, Hynes SC (1992) Selecting zinc-efficient cereal genotypes for soils of low zinc status. Plant Soil 146:241–250

    CAS  Article  Google Scholar 

  • Graham RD, Welch RM, Saunders DA, Ortiz-Monasterio I, Bouis HE, Bonierbale M, Haan S, Burgos G, Thiele G, Liria R, Meisner CA, Beebe SE, Potts MJ, Kadian M, Hobbs PR, Gupta RK, Twomlow S (2007) Nutritious subsistence food systems. Adv Agron 92:1–74. doi:10.1016/S0065-2113(04)92001-9

    CAS  Article  Google Scholar 

  • Hambidge KM (1997) Zinc deficiency and child development. Am J Clin Nutr 65(1):160–161

    CAS  PubMed  Google Scholar 

  • Haslett BS, Reid RJ, Rengel Z (2001) Zinc mobility in wheat: uptake and distribution of zinc applied to leaves or roots. Ann Bot 87:379–386. doi:10.1016/B978-0-12-394276-0.00001-9

    CAS  Article  Google Scholar 

  • Haug W, Lantzsch HJ (1983) Sensitive method for the rapid determination of phytate in cereals and cereal products. Sci Food Agric 34:1423–1426

    CAS  Article  Google Scholar 

  • Hotz C, Brown KH (2004) Assessment of the risk of Zinc deficiency in populations and options for its control. Food Nutr Bull 25:S91–S204

    Google Scholar 

  • Hussain S, Maqsoodab MA, Rengel Z, Aziz T (2012) Biofortification and estimated human bioavailability of zinc in wheat grains as influenced by methods of zinc application. Plant Soil 361:279–290. doi:10.1007/s11104-012-1217-4

    CAS  Article  Google Scholar 

  • Joy EJM, Stein AJ, Young SD, Ander EL, Watts MJ, Broadley MR (2015) Zinc-enriched fertilisers as a potential public health intervention in Africa. Plant Soil 389:1–24. doi:10.1007/s11104-015-2430-8

    CAS  Article  Google Scholar 

  • Karim MR, Zhang YQ, Zhao RR, Chen XP, Zhang FS, Zou CQ (2012) Alleviation of drought stress in winter wheat by late foliar application of zinc, boron and manganese. J Plant Nutr Soil Sci 175:142–151. doi:10.1002/jpln.201100141

    Article  Google Scholar 

  • Kutman UB, Yildiz B, Cakmak I (2011) Improved nitrogen status enhances zinc and iron concentrations both in the whole grain and the endosperm fraction of wheat. J Cereal Sci 53:118–125. doi:10.1013/j.jcs.2010.10.006

    CAS  Article  Google Scholar 

  • Levenson CW, Morris D (2011) Zinc and neurogenesis: making new neurons from development to adulthood. Adv Nutr 2:96–100. doi:10.3945/an.110.000174

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Li M, Wang S, Tian X, Zhao J, Li H (2015) Zn distribution and bioavailability in whole grain and grain fractions of winter wheat as affected by applications of soil N and foliar Zn combined with N or P. J Cereal Sci 61:26–32. doi:10.1016/j.jcs.2014.09.009

    CAS  Article  Google Scholar 

  • Lindsay WL, Norvell WA (1978) Development of a DTPA soil test for zinc, iron, manganese and copper. Soil Sci Soc Am J 42:421–428

    CAS  Article  Google Scholar 

  • Marschner H (1995) Mineral nutrition of higher plants, 2nd edn. Academic, London

    Google Scholar 

  • Mensink GB, Fletcher R, Gurinovic M, Serra-Majem L, Szponar L, Tetens I, Verkaik-Kloosterman J, Baka A, Stephen AM (2013) Mapping low intake of micronutrients across Europe. Br J Nutr 110:755–773. doi:10.1017/S000711451200565X

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Morgounov A, Gomez-Becerra HF, Abugalieva A, Dzhunusova M, Yessimbekova M, Muminjanov H, Zelensky Y, Ozturk L, Cakmak I (2007) Iron and zinc grain density in common wheat grown in Central Asia. Euphytica 155:193–203. doi:10.1007/s10681-006-9321-2

    Article  Google Scholar 

  • Morris ER, Ellis R (1989) Usefulness of the dietary phytic acid/zinc molar ratio as an index of zinc bioavailability to rats and humans. Biol Trace Elem Res 19:107–117

    CAS  Article  PubMed  Google Scholar 

  • National Research Council Recommended Dietary Allowances (2001) Reference intakes for vitamin A, vitamin K, As, B, Cr, Cu, I, Fe, Mn, Mo, Ni, Si and Zn. Institute of Medicine/Food and Nutrition Board. National Academy Press, Washington D.C, pp 37–46

    Google Scholar 

  • Ortega RM, Requejo AM, Andrés P, López-Sobales AM, Quintas ME, Redondo MR, Navia B, Rivas T (1997) Dietary intake and cognitive function in a group of elderly people. Am J Clin Nutr 66:803–809

    CAS  PubMed  Google Scholar 

  • Ozturk L, Yazici MA, Yucel C, Torun A, Cekic C, Bagci A, Ozkan H, Braun HJ, Sayers Z, Cakmak I (2006) Concentration and localization of zinc during seed development and germination in wheat. Physiol Plant 128:144–152. doi:10.1111/j.1399-3054.2006.00737.x

    CAS  Article  Google Scholar 

  • Pfeiffer WH, McClafferty B (2007) Biofortification: breeding micronutrient-dense crops in breeding major food staples. Kang MS, Priyadarshan PM (eds). Blackwell Publishing, 61–91

  • Phattarakul N, Rerkasem B, Li LJ, Wu LH, Zou CQ, Ram H, Sohu VS, Kang BS, Surek H, Kalayci M, Yazici A, Zhang FS, Cakmak I (2012) Biofortification of rice grain with zinc through zinc fertilization in different countries. Plant Soil 361:131–141. doi:10.1007/s11104-012-1211-x

    CAS  Article  Google Scholar 

  • Raboy V (2002) Progress in breeding low phytate crops. J Nutr 132:503S–505S

  • Römheld V, Marschner H (1991) Function of micronutrients in plants. In: Mortvedt JJ, Cox FR, Shuman LM, Welch RM (eds) Micronutrients in agriculture. Soil Science Society of America, book series N° 4. Madison, USA, pp 297–328

    Google Scholar 

  • Salgueiro MJ, Zubillaga MB, Lysionek AE, Caro RA, Weill R, Boccio JR (2002) The role of zinc in the growth and development of children. Nutrition 18:510–519

    CAS  Article  PubMed  Google Scholar 

  • Sánchez C, Lopez-Jurado M, Planells E, Llopis J, Aranda P (2009) Assessments of iron and zinc intake and related biochemical parameters in an adult Mediterranean population from southern Spain: influence of lifestyle factors. J Nutr Biochem 20:125–131. doi:10.1016/j.jnutbio.2007.12.008

    Article  PubMed  Google Scholar 

  • Sandberg AS, Anderson H, Carlesson NG, Sandstrom B (1987) Degradation products of bran phytate formed during digestion in the human small intestine: effects of extrussion cooking on digestibility. J Nutr 117:2061–2065

    CAS  PubMed  Google Scholar 

  • SHEFM Serviço de Higiene e Epidemiologia Facultade de Medicina da Universidade do Porto (2006) Consumo alimentar no Porto. www.consumoalimentarporto.med.up.pt

  • Sims JT, Johnson GV (1991) Micronutrient soil test in Micronutrients in Agriculture. In: Mordvedt JJ et al. (eds) The Soil Science Society of America Book Series n° 4, 2nd edn. Madison, WI. USA, pp 427–476

  • Soil Taxonomy (1998) USDA-Natural Resources Conservation Service, 11th edn. Washington, DC

  • Terrés C, Navarro M, Martin-Lagos F, Gimenez R, Lopez H, Lopez MC (2001) Zinc levels in foods from south-eastern Spain: relationship to daily dietary intake. Food Addit Contam 18:687–695. doi:10.1080/02652030121584

    Article  PubMed  Google Scholar 

  • Velu G, Ortiz-Monasterio I, Cakmak I, Hao Y, Singh RP (2013) Biofortification strategies to increase grain zinc and iron concentrations in wheat. J Cereal Sci 59:365–372. doi:10.1016/j.jcs.2013.09.001

    Article  Google Scholar 

  • Welch RM, Graham RD (2002) Breeding crops for enhanced micronutrient content. Plant Soil 245:205–214

  • Welch RM, Graham RD (2004) Breeding for micronutrients in staple food crops from a human nutrition perspective. J Exp Bot 55:353–364. doi:10.1093/jxb/erh064

    CAS  Article  PubMed  Google Scholar 

  • White PJ, Broadley MR (2005) Biofortifying crops with essential mineral elements. Trends Plant Sci 10:586–593. doi:10.1016/j.tplants.2005.10.001

    Article  PubMed  Google Scholar 

  • World Health Organization and Food and Agriculture Organization of the United Nations, WHO (2009) Global Health Risks, World Health Organization, pp 1–70

  • Zhang YQ, Shi RL, Karim MR, Zhang FS, Zou CQ (2010) Iron and zinc concentrations in grain and flour of winter wheat as affected by foliar application. J Agric Food Chem 58:12268–12274. doi:10.1021/jf103039k

    CAS  Article  PubMed  Google Scholar 

  • Zhang YQ, Sun YX, Ye YL, Karim MR, Xue YF, Yan P, Meng QF, Cui ZL, Cakmak I, Zhang FS, Zou CQ (2012) Zinc biofortification of wheat through fertilizers applications in different locations of China. Field Crop Res 125:1–7. doi:10.1016/j.fcr.2011.08.003

    Article  Google Scholar 

  • Zou CQ, Zhang YQ, Rashid A, Ram H, Savasli E, Arisoy RZ, Ortiz-Monasterio I, Simunji S, Wang ZH, Sohu V, Hassan M, Kaya Y, Onder O, Lungu O, Yaqub Mujahid M, Joshi AK, Zelenskiy Y, Zhang FS, Cakmak I (2012) Biofortification of wheat with zinc through zinc fertilization in seven countries. Plant Soil 361:119–130. doi:10.1007/sl1104-012-1369-2

    CAS  Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria J. Poblaciones.

Additional information

Responsible Editor: Philip John White.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gomez-Coronado, F., Poblaciones, M.J., Almeida, A.S. et al. Zinc (Zn) concentration of bread wheat grown under Mediterranean conditions as affected by genotype and soil/foliar Zn application. Plant Soil 401, 331–346 (2016). https://doi.org/10.1007/s11104-015-2758-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-015-2758-0

Keywords

  • Agronomic biofortification
  • Genetic biofortification
  • Wheat
  • Zinc deficiency
  • Zinc fertilizers