Skip to main content

Stoichiometric response of shrubs and mosses to long-term nutrient (N, P and K) addition in an ombrotrophic peatland

Abstract

Background and aim

Although ombrotrophic peatlands are nutrient deficient, it is not clear to what extent plants will respond to changes in nutrient availability.

Methods

We examined the changes in foliar stoichiometry and species abundance of four shrub species and moss after a decade of nitrogen (N), phosphorus (P) and potassium (K) fertilization at the Mer Bleue bog, eastern Canada.

Results

Shrub abundance increased and moss cover decreased after fertilization with 6.4, 5 and 6.3 g m−2 yr−1 of N, P and K, respectively; foliar concentrations of N, P, K and calcium (Ca) and magnesium (Mg) were affected. Stoichiometry showed mainly N limitation after P and K fertilization and P (co)limitation after high levels of N addition in shrubs; moss showed consistent K or KN-co-limitation, even with PK and NPK additions. Shrubs exhibited the strongest homeostasis (the maintenance of an organism’s tissue chemical composition with changes in environmental resources) to N, with the homeostatic regulation coefficient (H) > 9.7, compared to 1.4 in moss. For P and K, shrubs showed weaker homeostasis than N, while moss had a stronger homeostasis.

Conclusions

The strong homeostasis of shrubs may be an adaptive strategy to limited availability of soil N and P.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Aerts R, Wallén B, Malmer N (1992) Growth-limiting nutrients in Sphagnum-dominated bogs subject to low and high atmospheric nitrogen supply. J Ecol 80:131–140

    Article  Google Scholar 

  2. Aldous AR (2002) Nitrogen translocation in Sphagnum mosses: effects of atmospheric nitrogen deposition. New Phytol 156:241–253

    Article  CAS  Google Scholar 

  3. Berendse F, Van Breemen N, Rydin H, Buttler A, Heijmans M, Hoosbeek MR, Lee JA, Mitchell E, Saarinen T, Vasander H, Wallén B (2001) Raised atmospheric CO2 levels and increased N deposition cause shifts in plant species composition and production in Sphagnum bogs. Glob Chang Biol 7:591–598

    Article  Google Scholar 

  4. Bragazza L, Limpens J, Gerdol R, Grosvernier P, Hájek M, Hájek T, Hajkova P, Hansen I, Iacumin P, Kutnar L, Rydin H, Tahvanainen T (2005) Nitrogen concentration and δ15N signature of ombrotrophic Sphagnum mosses at different N deposition levels in Europe. Glob Chang Biol 11:106–114

    Article  Google Scholar 

  5. Bragazza L, Parisod J, Buttler A, Bardgett RD (2013) Biogeochemical plant-soil microbe feedback in response to climate warming in peatlands. Nat Clim Chang 3:273–277

    Article  CAS  Google Scholar 

  6. Bragazza L, Tahvanainen T, Kutnar L, Rydin H, Limpens J, Hájek M, Grosvernier P, Hájek T, Hajkova P, Hansen I, Iacumin P, Gerdol R (2004) Nutritional constraints in ombrotrophic Sphagnum plants under increasing atmospheric nitrogen deposition in Europe. New Phytol 163: 609–616

  7. Bubier JL, Moore TR, Bledzki LA (2007) Effects of nutrient addition on vegetation and carbon cycling in an ombrotrophic bog. Glob Chang Biol 13:1168–1186

    Article  Google Scholar 

  8. Bubier JL, Smith R, Juutinen S, Moore TR, Minocha R, Long S, Minocha S (2011) Effects of nutrient addition on leaf chemistry morphology and photosynthetic capacity of three bog shrubs. Oecologia 167:355–368

    Article  PubMed  Google Scholar 

  9. Buttler A (1992) Permanent plot research in wet meadows and cutting experiment. Vegetatio 103:113–124

    Google Scholar 

  10. Canadian Climate Normals (1981–2010) National climate data and information archive. http://climate.weather.gc.ca/climate_normals. Accessed 04 May 2015

  11. Charman D (2002) Peatlands and environmental change. Wiley, Chichester

    Google Scholar 

  12. Chong M, Humphreys E, Moore TR (2012) Microclimatic response to increasing shrub cover and its effect on Sphangum CO2 exchange in a bog. Ecoscience 19:89–97

    Article  Google Scholar 

  13. Granath G, Strengbom J, Breeuwer A, Heijmans MMPD, Berendse F, Rydin H (2009) Photosynthetic performance in Sphagnum transplanted along a latitudinal nitrogen deposition gradient. Oecologia 159:705–715

    Article  PubMed  Google Scholar 

  14. Hangs RD, Greer KJ, Sulewski CA (2004) The effect of interspecific competition on conifer seedling growth and nitrogen availability measured using ion-exchange membranes. Can J For Res 34:754–761

    Article  Google Scholar 

  15. Heijmans MMPD, Berendse F, Arp WJ, Masselink AK, Klees H, de Visser W, van Breemen N (2001) Effects of elevated carbon dioxide and increased nitrogen deposition on bog vegetation in the Netherlands. J Ecol 89:268–279

    Article  CAS  Google Scholar 

  16. Heijmans MMPD, Klees H, Berendse F (2002) Competition between Sphagnum magellanicum and Eriophorum angustifolium as affected by raised CO2 and increased N deposition. Oikos 97:415–425

    Article  CAS  Google Scholar 

  17. Hoosbeek MR, Van Breemen N, Vasander H, Buttler A, Berendse F (2002) Potassium limits potential growth of bog vegetation under elevated atmospheric CO2 and N deposition. Glob Chang Biol 8:1130–1138

    Article  Google Scholar 

  18. Jiroušek M, Hájek M, Bragazza L (2011) Nutrient stoichiometry in Sphagnum along a nitrogen deposition gradient in highly polluted region of Central-East Europe. Environ Pollut 159:585–590

    Article  PubMed  CAS  Google Scholar 

  19. Juutinen S, Bubier JL, Moore TR (2010) Responses of vegetation and ecosystem CO2 exchange to 9 years of nutrient addition at Mer Bleue bog. Ecosystems 13:874–887

    Article  CAS  Google Scholar 

  20. Koerselman W, Meuleman AFM (1996) The vegetation N:P ratio: a new tool to detect the nature of nutrient limitation. J Appl Ecol 33:1441–1450

    Article  Google Scholar 

  21. Kooijman SALM (1995) The stoichiometry of animal energetics. J Theor Biol 177:139–149

    Article  Google Scholar 

  22. Lamers LPM, Bobbink R, Roelofs JGM (2000) Natural nitrogen filter fails in polluted raised bogs. Glob Chang Biol 6:583–586

    Article  Google Scholar 

  23. Larmola T, Bubier JL, Kobyljanec C, Basiliko N, Juutinen S, Humphreys E, Preston M, Moore TR (2013) Vegetation feedbacks of nutrient addition lead to a weaker carbon sink in an ombrotrophic bog. Glob Chang Biol 19:3729–3739

    Article  PubMed  Google Scholar 

  24. Larmola T, Leppänen SM, Tuittila E-S, Aarva M, Merilä P, Fritze H, Tiirola M (2014) Methanotrophy induces nitrogen fixation during peatland development. Proc Natl Acad Sci U S A 111:734–739

    PubMed Central  Article  PubMed  CAS  Google Scholar 

  25. Limpens J, Berendse F (2003) Growth reduction of Sphagnum magellanicum subjected to high nitrogen deposition: the role of amino acid nitrogen concentration. Oecologia 135:339–345

    Article  PubMed  CAS  Google Scholar 

  26. Limpens J, Berendse F, Klees H (2003) N deposition affects N availability in interstitial water growth of Sphagnum and invasion of vascular plants in bog vegetation. New Phytol 157:339–347

    Article  Google Scholar 

  27. Loisel J, Yu ZC, Beilman DW, Camill P, Alm J, Amesbury MJ, Anderson D, Andersson S, Bochicchio C, Barber K, Belyea LR, Bunbury J, Chambers FM, Charman DJ, De Vleeschouwer F, Fialkiewicz-Koziel B, Finkelstein SA, Galka M, Garneau M, Hammarlund D, Hinchcliffe W, Holmquist J, Hughes P, Jones MC, Klein ES, Kokfelt U, Korhola A, Kuhry P, Lamarre A, Lamentowicz M, Large D, Lavoie M, MacDonald G, Magnan G, Makila M, Mallon G, Mathijssen P, Mauquoy D, McCarroll J, Moore TR, Nichols J, O’Reilly B, Oksanen P, Packalen M, Peteet D, Richard PJH, Robinson S, Ronkainen T, Rundgren M, Sannel ANK, Tarnocai C, Thom T, Tuittila ES, Turetsky M, Valiranta M, van der Linden M, van Geel B, van Bellen S, Vitt D, Zhao Y, Zhou WJ (2014) A database and synthesis of northern peatland soil properties and Holocene carbon and nitrogen accumulation. The Holocene 24:1028–1042

    Article  Google Scholar 

  28. Mahowald N, Jickells TD, Baker AR, Artaxo P, Benitez-Nelson CR, Bergametti G, Bond TC, Chen Y, Cohen DD, Herut B, Kubilay N, Losno R, Luo C, Maenhaut W, McGee KA, Okin GS, Siefert RL, Tsukuda S (2008) Global distribution of atmospheric phosphorus sources concentrations and deposition rates and anthropogenic impacts. Glob Biogeochem Cycles 22, GB4026

    Article  CAS  Google Scholar 

  29. Makino W, Cotner JB, Sterner RW, Elser JJ (2003) Are bacteria more like plants or animals? Growth rate and resource dependence of bacterial C:N:P stoichiometry. Funct Ecol 17:121–130

    Article  Google Scholar 

  30. Malmer N, Horton DG, Vitt DH (1992) Element concentrations in mosses and surface waters of western Canadian mires relative to precipitation chemistry and hydrology. Ecography 15:114–128

    Article  Google Scholar 

  31. Murphy J, Riley JP (1962) A modified single solution method for determination of phosphate in natural waters. Anal Chim Acta 26:31–36

    Article  Google Scholar 

  32. Murphy MT, McKinley A, Moore TR (2009) Variations in above- and below-ground vascular plant biomass and water table on a temperate ombrotrophic peatland. Botany 87:845–853

    Article  Google Scholar 

  33. Newman EI (1995) Phosphorus inputs to terrestrial ecosystems. J Ecol 83:713–726

    Article  Google Scholar 

  34. Olde Venterink H, Wassen MJ, Verkroost AWM, de Ruiter PC (2003) Species richness-productivity patterns differ between N- P- and K-limited wetlands. Ecology 84:2191–2199

    Article  Google Scholar 

  35. Pakarinen P, Gorham E (1983) Mineral element composition of Sphagnum fuscum peats collected from Minnesota, Mannitoba and Ontario. In: Spigarelli S (ed) Proceedings of the international peat symposium. Bemidji State University, Bemidji, pp 471–479

    Google Scholar 

  36. Pakarinen P, Tolonen K (1977) Nutrient contents of Sphagnum mosses in relation to bog water chemistry in northern Finland. Lindbergia 4:27–33

    Google Scholar 

  37. Parkinson JA, Allen SE (1975) Wet oxidation procedure suitable for determination of nitrogen and mineral nutrients in biological material. Commun Soil Sci Plant Anal 6:1–11

    Article  CAS  Google Scholar 

  38. Persson J, Fink P, Goto A, Hood JM, Jonas J, Kato S (2010) To be or not to be what you eat: regulation of stoichiometric homeostasis among autotrophs and heterotrophs. Oikos 119:741–751

    Article  CAS  Google Scholar 

  39. Rydin H, Clymo RS (1989) Transport of carbon and phosphorus compounds about Sphagnum. Proc R Soc B-Biol Sci 237:63–84

    Article  CAS  Google Scholar 

  40. Rydin H, Jeglum JK (2006) The biology of peatlands. Oxford University Press, New York City

    Book  Google Scholar 

  41. Schindler DW, Newbury RW, Beaty KG, Campbell P (1976) Natural water and chemical budgets for a small Precambrian lake basin in Central Canada. J Fish Res Bd Can 33:2526–2543

    Article  CAS  Google Scholar 

  42. Sterner RW, Elser JJ (2002) Ecological stoichiometry: the biology of elements from molecules to the biosphere. Princeton University Press, Princeton

    Google Scholar 

  43. Tarnocai C (2006) The effect of climate change on carbon in Canadian peatlands. Glob Planet Chang 53:222–232

    Article  Google Scholar 

  44. Thormann MN, Bayley SE (1997) Aboveground plant production and nutrient content of the vegetation in six peatlands in Alberta Canada. Plant Ecol 131:1–16

    Article  Google Scholar 

  45. Tipping E, Benham S, Boyle JF, Crow P, Davies J, Fischer U, Guyatt H, Helliwell R, Jackson-Blake L, Lawlor AJ, Monteith DT, Rowe EC, Toberman H (2014) Atmospheric deposition of phosphorus to land and freshwater. Environ Sci Process Impacts 16:1608–1617

    Article  PubMed  CAS  Google Scholar 

  46. Tomassen HBM, Smolders AJP, Lamers LPM, Roelofs JGM (2003) Stimulated growth of Betula pubescens and Molinia caerulea on ombrotrophic bogs: role of high levels of atmospheric nitrogen deposition. J Ecol 91:357–370

    Article  Google Scholar 

  47. Turunen J, Roulet N, Moore TR, Richard PJH (2004) Nitrogen deposition and increased carbon accumulation in ombrotrophic peatlands in eastern Canada. Glob Biogeochem Cycles 18, GB3002

    Article  CAS  Google Scholar 

  48. Vitt DH, Wieder K, Halsey LA, Turetsky M (2003) Response of Sphagnum fuscum to nitrogen deposition: a case study of ombrogenous peatlands in Alberta Canada. Bryologist 106:235–245

    Article  Google Scholar 

  49. Walbridge MR, Navaratnnam JA (2006) Phosphorus in boreal peatlands. In: Wieder RK, Vitt DH (eds) Boreal peatland ecosystems. Springer, Heidelberg, pp 231–258

    Chapter  Google Scholar 

  50. Wang M, Moore TR (2014) Carbon nitrogen phosphorus and potassium stoichiometry in an ombrotrophic peatland reflects plant functional type. Ecosystems 17:673–684

    Article  CAS  Google Scholar 

  51. Wang M, Murphy M, Moore TR (2014) Nutrient resorption of two evergreen shrubs in response to long-term fertilization in a bog. Oecologia 174:365–377

    Article  PubMed  Google Scholar 

  52. Wang M, Moore TR, Talbot J, Riley JL (2015) The stoichiometry of carbon and nutrients in peat formation. Glob Biogeochem Cycles 29:113–121

    Article  CAS  Google Scholar 

  53. Yu Q, Chen QS, Elser JJ, He NP, Wu HH, Zhang GM, Wu JG, Bai YF, Han XG (2010) Linking stoichiometric homoeostasis with ecosystem structure functioning and stability. Ecol Lett 13:1390–1399

    Article  PubMed  Google Scholar 

  54. Yu Q, Elser JJ, He NP, Wu HH, Chen QS, Zhang GM, Han X (2011) Stoichiometric homeostasis of vascular plants in the Inner Mongolia grassland. Oecologia 166:1–10

    Article  PubMed  Google Scholar 

  55. Zar JH (2009) Biostatistical analysis. Pearson Prentice Hall, Upper Saddle River

    Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the laboratory assistance of Hicham Benslim, Leanne Elchyshyn, Kellie Foster, Hélène Lalande, Sheng-Ting Lin and Cheenar Shah, and the field assistance of Corinne Magnusson, Mike Dalva and Vi Bui. MW was awarded a Ph.D. fellowship by the Chinese Scholarship Council and this research was funded by a Natural Sciences and Engineering Research Council Discovery Grant to TRM and a National Science Foundation grant (DEB 1019523) to JLB. Additional funding was received from the Academy of Finland (Projects 286731, 293365 to TL) and the Start-up Funds (Z109021502) of Northwest A&F University to MW. We thank the National Capital Commission for access to Mer Bleue.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Meng Wang.

Additional information

Responsible Editor: Etienne Laliberté.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Figure S1

(DOC 38 kb)

Supplementary Figure S2

(DOC 321 kb)

Supplementary Table S1

(DOC 32 kb)

Supplementary Table S2

(DOC 52 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wang, M., Larmola, T., Murphy, M.T. et al. Stoichiometric response of shrubs and mosses to long-term nutrient (N, P and K) addition in an ombrotrophic peatland. Plant Soil 400, 403–416 (2016). https://doi.org/10.1007/s11104-015-2744-6

Download citation

Keywords

  • Stoichiometry
  • Homeostasis
  • Chamaedaphne calyculata
  • Sphagnum moss
  • Kalmia angustifolia
  • Rhododendron groenlandicum
  • Vaccinium myrtilloides