archiDART: an R package for the automated computation of plant root architectural traits

Abstract

Background and aims

In order to analyse root system architectures (RSAs) from captured images, a variety of manual (e.g. Data Analysis of Root Tracings, DART), semi-automated and fully automated software packages have been developed. These tools offer complementary approaches to study RSAs and the use of the Root System Markup Language (RSML) to store RSA data makes the comparison of measurements obtained with different (semi-) automated root imaging platforms easier. The throughput of the data analysis process using exported RSA data, however, should benefit greatly from batch analysis in a generic data analysis environment (R software).

Methods

We developed an R package (archiDART) with five functions. It computes global RSA traits, root growth rates, root growth directions and trajectories, and lateral root distribution from DART-generated and/or RSML files. It also has specific plotting functions designed to visualise the dynamics of root system growth.

Results

The results demonstrated the ability of the package’s functions to compute relevant traits for three contrasted RSAs (Brachypodium distachyon [L.] P. Beauv., Hevea brasiliensis Müll. Arg. and Solanum lycopersicum L.).

Conclusions

This work extends the DART software package and other image analysis tools supporting the RSML format, enabling users to easily calculate a number of RSA traits in a generic data analysis environment.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. Bucksch A, Burridge J, York LM et al (2014) Image-based high-throughput field phenotyping of crop roots. Plant Physiol 166:470–486. doi:10.1104/pp. 114.243519

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  2. Cai J, Zeng Z, Connor JN et al (2015) RootGraph : a graphic optimization tool for automated image analysis of plant roots. J Exp Bot. doi:10.1093/jxb/erv359

    Google Scholar 

  3. Clark RT, MacCurdy RB, Jung JK et al (2011) Three-dimensional root phenotyping with a novel imaging and software platform. Plant Physiol 156:455–465. doi:10.1104/pp. 110.169102

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  4. Clark RT, Famoso AN, Zhao K et al (2013) High-throughput two-dimensional root system phenotyping platform facilitates genetic analysis of root growth and development. Plant Cell Environ 36:454–466. doi:10.1111/j.1365-3040.2012.02587.x

    CAS  Article  PubMed  Google Scholar 

  5. Cobb JN, DeClerck G, Greenberg A et al (2013) Next-generation phenotyping : requirements and strategies for enhancing our understanding of genotype-phenotype relationships and its relevance to crop improvement. Theor Appl Genet 126:867–887. doi:10.1007/s00122-013-2066-0

    Article  PubMed  PubMed Central  Google Scholar 

  6. R Core Team (2015) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL http://www.r-project.org/

  7. De Dorlodot S, Forster B, Pagès L et al (2007) Root system architecture: opportunities and constraints for genetic improvement of crops. Trends Plant Sci 12:474–481. doi:10.1016/j.tplants.2007.08.012

    Article  PubMed  Google Scholar 

  8. De Kroon H (2007) How do roots interact? Science 318:1562–1563. doi:10.1126/science.1150726

    Article  PubMed  Google Scholar 

  9. Delaplace P, Delory BM, Baudson C et al (2015) Influence of rhizobacterial volatiles on the root system architecture and the production and allocation of biomass in the model grass Brachypodium distachyon (L.) P. Beauv. BMC Plant Biol 15:1–15. doi:10.1186/s12870-015-0585-3

    CAS  Article  Google Scholar 

  10. Delory BM, Baudson C, Brostaux Y et al (2015) archiDART: plant root system architecture analysis using DART and RSML files. R package version 1.1. http://CRAN.R-project.org/package=archiDART

  11. Den Herder G, Van Isterdael G, Beeckman T, De Smet I (2010) The roots of a new green revolution. Trends Plant Sci 15:600–607. doi:10.1016/j.tplants.2010.08.009

    Article  Google Scholar 

  12. Diener J, Nacry P, Périn C et al (2013) An automated image-processing pipeline for high-throughput analysis of root architecture in OpenAlea. 7th Int. Conf. Funct. Plant Model. Saariselkä, Finland, pp 85–87

  13. Dupuy L, Gregory PJ, Glyn Bengough A (2010) Root growth models: towards a new generation of continuous approaches. J Exp Bot 61:2131–2143. doi:10.1093/jxb/erp389

    CAS  Article  PubMed  Google Scholar 

  14. Faget M, Nagel KA, Walter A et al (2013) Root-root interactions: extending our perspective to be more inclusive of the range of theories in ecology and agriculture using in-vivo analyses. Ann Bot 112:253–266. doi:10.1093/aob/mcs296

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  15. Fiorani F, Schurr U (2013) Future scenarios for plant phenotyping. Annu Rev Plant Biol 64:267–291. doi:10.1146/annurev-arplant-050312-120137

    CAS  Article  PubMed  Google Scholar 

  16. Forde B, Lorenzo H (2001) The nutritional control of root development. Plant Soil 232:51–68. doi:10.1023/A:1010329902165

    CAS  Article  Google Scholar 

  17. French A, Ubeda-Tomás S, Holman TJ et al (2009) High-throughput quantification of root growth using a novel image-analysis tool. Plant Physiol 150:1784–1795. doi:10.1104/pp. 109.140558

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  18. Giehl RFH, Gruber BD, von Wirén N (2014) It’s time to make changes: modulation of root system architecture by nutrient signals. J Exp Bot 65:769–778. doi:10.1093/jxb/ert421

    CAS  Article  PubMed  Google Scholar 

  19. Godin C, Sinoquet H (2005) Functional – structural plant modelling. New Phytol 166:705–708

    Article  PubMed  Google Scholar 

  20. Gonkhamdee S, Pierret A, Maeght J-L et al (2010) Effects of corn (Zea mays L.) on the local and overall root development of young rubber tree (Hevea brasiliensis Muel. Arg). Plant Soil 334:335–351. doi:10.1007/s11104-010-0386-2

    CAS  Article  Google Scholar 

  21. Iyer-Pascuzzi AS, Symonova O, Mileyko Y et al (2010) Imaging and analysis platform for automatic phenotyping and trait ranking of plant root systems. Plant Physiol 152:1148–1157. doi:10.1104/pp. 109.150748

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  22. Kumar P, Huang C, Cai J, Miklavcic SJ (2014) Root phenotyping by root tip detection and classification through statistical learning. Plant Soil 380:193–209. doi:10.1007/s11104-014-2071-3

    CAS  Article  Google Scholar 

  23. Le Bot J, Serra V, Fabre J et al (2010) DART: a software to analyse root system architecture and development from captured images. Plant Soil 326:261–273. doi:10.1007/s11104-009-0005-2

    Article  Google Scholar 

  24. Le Marié C, Kirchgessner N, Marschall D et al (2014) Rhizoslides : paper-based growth system for non-destructive, high throughput phenotyping of root development by means of image analysis. Plant Methods 10:1–16. doi:10.1186/1746-4811-10-13

    Article  Google Scholar 

  25. Le Roux Y, Pagès L (1994) Développement et polymorphisme racinaires chez de jeunes semis d’hévéa (Hevea brasiliensis). Can J Bot 72:924–932

    Article  Google Scholar 

  26. Leitner D, Felderer B, Vontobel P, Schnepf A (2014) Recovering root system traits using image analysis exemplified by two-dimensional neutron radiography images of lupine. Plant Physiol 164:24–35. doi:10.1104/pp. 113.227892

    CAS  Article  PubMed  Google Scholar 

  27. Lobet G (2015) rsml: Plant Root System Markup Language (RSML) file processing. R package version 1.2. http://CRAN.R-project.org/package=rsml

  28. Lobet G, Pagès L, Draye X (2011) A novel image-analysis toolbox enabling quantitative analysis of root system architecture. Plant Physiol 157:29–39. doi:10.1104/pp. 111.179895

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  29. Lobet G, Draye X, Périlleux C (2013) An online database for plant image analysis software tools. Plant Methods 9:1–7. doi:10.1186/1746-4811-9-38

    Article  PubMed  PubMed Central  Google Scholar 

  30. Lobet G, Pound MP, Diener J et al (2015) Root System Markup Language : toward an unified root architecture description language. Plant Physiol 167:617–627. doi:10.1104/pp. 114.253625

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  31. López-Bucio J, Cruz-Ramírez A, Herrera-Estrella L (2003) The role of nutrient availability in regulating root architecture. Curr Opin Plant Biol 6:280–287. doi:10.1016/S1369-5266(03)00035-9

    Article  PubMed  Google Scholar 

  32. Lynch J (1995) Root architecture and plant productivity. Plant Physiol 109:7–13

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  33. Lynch JP (2013) Steep, cheap and deep: an ideotype to optimize water and N acquisition by maize root systems. Ann Bot 112:347–357. doi:10.1093/aob/mcs293

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  34. Malamy JE (2005) Intrinsic and environmental response pathways that regulate root system architecture. Plant Cell Environ 28:67–77

    CAS  Article  PubMed  Google Scholar 

  35. Mathieu L, Lobet G, Tocquin P, Périlleux C (2015) “Rhizoponics”: a novel hydroponic rhizotron for root system analyses on mature Arabidopsis thaliana plants. Plant Methods 11:1–7. doi:10.1186/s13007-015-0046-x

    Article  Google Scholar 

  36. Meister R, Rajani MS, Ruzicka D, Schachtman DP (2014) Challenges of modifying root traits in crops for agriculture. Trends Plant Sci 19:779–788. doi:10.1016/j.tplants.2014.08.005

    CAS  Article  PubMed  Google Scholar 

  37. Nagel KA, Putz A, Gilmer F et al (2012) GROWSCREEN-Rhizo is a novel phenotyping robot enabling simultaneous measurements of root and shoot growth for plants grown in soil-filled rhizotrons. Funct Plant Biol 39:891–904

    Article  Google Scholar 

  38. Pace J, Lee N, Naik HS et al (2014) Analysis of maize (Zea mays L.) seedling roots with the high-throughput image analysis tool ARIA (Automatic Root Image Analysis). PLoS One 9, e108255. doi:10.1371/journal.pone.0108255

    Article  PubMed  PubMed Central  Google Scholar 

  39. Pagès L (2014) Branching patterns of root systems: quantitative analysis of the diversity among dicotyledonous species. Ann Bot 114:591–598. doi:10.1093/aob/mcu145

    Article  PubMed  PubMed Central  Google Scholar 

  40. Pagès L, Bécel C, Boukcim H et al (2013) Calibration and evaluation of ArchiSimple, a simple model of root system architecture. Ecol Model 290:76–84. doi:10.1016/j.ecolmodel.2013.11.014

    Article  Google Scholar 

  41. Pound MP, French AP, Atkinson JA et al (2013) RootNav: navigating images of complex root architectures. Plant Physiol 162:1802–1814. doi:10.1104/pp. 113.221531

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  42. Rascher U, Blossfeld S, Fiorani F et al (2011) Non-invasive approaches for phenotyping of enhanced performance traits in bean. Funct Plant Biol 38:968–983. doi:10.1071/FP11164

    CAS  Article  Google Scholar 

  43. Rich SM, Watt M (2013) Soil conditions and cereal root system architecture: review and considerations for linking Darwin and Weaver. J Exp Bot 64:1193–1208. doi:10.1093/jxb/ert043

    CAS  Article  PubMed  Google Scholar 

  44. Schmid C, Bauer S, Bartelheimer M (2015) Should I stay or should I go? Roots segregate in response to competition intensity. Plant Soil 391:283–291. doi:10.1007/s11104-015-2419-3

    CAS  Article  Google Scholar 

  45. Slovak R, Göschl C, Su X et al (2014) A scalable open-source pipeline for large-scale root phenotyping of Arabidopsis. Plant Cell 26:2390–2403. doi:10.1105/tpc.114.124032

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  46. Thaler P, Pagès L (1996a) Root apical diameter and root elongation rate of rubber seedlings (Hevea brasiliensis) show parallel responses to photoassimilate availability. Physiol Plant 97:365–371

    CAS  Article  Google Scholar 

  47. Thaler P, Pagès L (1996b) Periodicity in the development of the root system of young rubber trees (Hevea brasiliensis Muell. Arg.): relationship with shoot development. Plant Cell Environ 19:56–64

    Article  Google Scholar 

  48. Uga Y, Sugimoto K, Ogawa S et al (2013) Control of root system architecture by DEEPER ROOTING 1 increases rice yield under drought conditions. Nat Genet 45:1097–1102. doi:10.1038/ng.2725

    CAS  Article  PubMed  Google Scholar 

  49. Wells DM, French AP, Naeem A et al (2012) Recovering the dynamics of root growth and development using novel image acquisition and analysis methods. Philos Trans R Soc B 367:1517–1524. doi:10.1098/rstb.2011.0291

    Article  Google Scholar 

  50. Wu J, Pagès L, Wu Q et al (2014) Three-dimensional architecture of axile roots of field-grown maize. Plant Soil 387:363–377. doi:10.1007/s11104-014-2307-2

    Article  Google Scholar 

  51. Zhu J, Ingram PA, Benfey PN, Elich T (2011) From lab to field, new approaches to phenotyping root system architecture. Curr Opin Plant Biol 14:310–317. doi:10.1016/j.pbi.2011.03.020

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

Delory B.M. (Research Fellow) and Lobet G. (Postdoctoral Researcher) are financially supported by the Belgian National Fund for Scientific Research. The authors would like to thank Jacques Le Bot (INRA, Centre PACA, UR 1115 PSH) for providing the vectorized root system of the tomato plant used in this paper, and Pierre Tocquin (University of Liège, PhytoSYSTEMS) and three anonymous reviewers for their helpful comments on the manuscript.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Pierre Delaplace.

Additional information

Responsible Editor: Alexia Stokes.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Delory, B.M., Baudson, C., Brostaux, Y. et al. archiDART: an R package for the automated computation of plant root architectural traits. Plant Soil 398, 351–365 (2016). https://doi.org/10.1007/s11104-015-2673-4

Download citation

Keywords

  • Plant root system architecture
  • Data Analysis of Root Tracings (DART)
  • Root System Markup Language (RSML)
  • 2D dynamic analysis
  • Root trait