Aerts R (1997) Climate, leaf litter chemistry and leaf litter decomposition in terrestrial ecosystems: a triangular relationship. Oikos 79:439–449
Article
Google Scholar
Allison SD, Lu Y, Weihe C, Goulden ML, Martiny AC, Treseder KK, Martiny JBH (2013) Microbial abundance and composition influence litter decomposition response to environmental change. Ecology 94:714–725
Article
PubMed
Google Scholar
Barantal S, Roy J, Fromin N, Schimann H, Hättenschwiler S (2011) Long-term presence of tree species but not chemical diversity affect litter mixture effects on decomposition in a neotropical rainforest. Oecologia 167:241–252. doi:10.1007/s00442-011-1966-4
Article
PubMed
Google Scholar
Berg B, McClaugherty C (2008) Plant litter decomposition, humus formation, carbon sequestration, 2nd edn. Springer, Berlin Heidelberg
Google Scholar
Berglund SL, Ågren GI (2012) When will litter mixtures decompose faster or slower than individual litters? A model for two litters. Oikos 121:1112–1120. doi:10.1111/j.1600-0706.2011.19787.x
Article
Google Scholar
Berlese A (1905) Apparicchio per raccogliere presto ed in gran numero di piccoli artropodi. Redia 2:85–89
Google Scholar
Blagodatsky S, Blagodatskaya E, Yuyukina T, Kuzyakov Y (2010) Model of apparent and real priming effects: linking microbial activity with soil organic matter decomposition. Soil Biol Biochem 42:1275–1283. doi:10.1016/j.soilbio.2010.04.005
CAS
Article
Google Scholar
Bonanomi G, Capodilupo M, Incerti G, Mazzoleni S (2014) Nitrogen transfer in litter mixture enhances decomposition rate, temperature sensitivity, and C quality changes. Plant Soil 381:307–321. doi:10.1007/s11104-014-2119-4
CAS
Article
Google Scholar
Chang SX, Weetman GF, Preston CM (1996) Understory competition effect on tree growth and biomass allocation on a coastal old-growth forest cutover site in British Columbia. For Ecol Manag 83:1–11. doi:10.1016/0378-1127(96)03707-3
Article
Google Scholar
Chapman K, Whittaker JB, Heal OW (1988) Metabolic and faunal activity in litters of tree mixtures compared with pure stands. Agric Ecosyst Environ 24:33–40. doi:10.1016/0167-8809(88)90054-0
Article
Google Scholar
Chomel M (2014) Sylviculture intensive en région boréale: impact de la mixité des essences sur le processus de décomposition des litières et le stockage de carbone. Ph.D. Thesis. Université du Québec en Abitibi-Témiscamingue - Université Aix Marseille
Chomel M, DesRochers A, Baldy V, Larchevêque M, Gauquelin T (2014a) Non-additive effects of mixing hybrid poplar and white spruce on aboveground and soil carbon storage in boreal plantations. For Ecol Manag 328:292–299. doi:10.1016/j.foreco.2014.05.048
Article
Google Scholar
Chomel M et al (2014b) Secondary metabolites of Pinus halepensis alter decomposer organisms and litter decomposition during afforestation of abandoned agricultural zones. J Ecol 102:411–424
Article
Google Scholar
Chomel M, Larchevêque M, DesRochers A, Baldy V (2014c) Home field advantage of litter decomposition in pure and mixed plantations under boreal climate. Submitted
Chomel M, Guittonny-Larchevêque M, DesRochers A, Baldy V (2015) Home field advantage of litter decomposition in pure and mixed plantations under boreal climate. Ecosystems 1–15 doi:10.1007/s10021-015-9880-y
Coineau Y (1974) Introduction à l’étude des microarthropodes du sol et ses annexes
Coleman DC, Crossley DA Jr, Hendrix PF (2004) Fundamentals of soil ecology, 2nd edn. Elsevier Academic Press, San Diego
Google Scholar
Coll L, Messier C, Delagrange S, Berninger F (2007) Growth, allocation and leaf gas exchanges of hybrid poplar plants in their establishment phase on previously forested sites: effect of different vegetation management techniques. Ann For Sci 64:275–285. doi:10.1051/forest:2007005
Article
Google Scholar
Collison EJ, Riutta T, Slade EM (2013) Macrofauna assemblage composition and soil moisture interact to affect soil ecosystem functions. Acta Oecol 47:30–36. doi:10.1016/j.actao.2012.12.002
Article
Google Scholar
David JF, Gillon D (2002) Annual feeding rate of the millipede Glomeris marginata on holm oak (Quercus flex) leaf litter under Mediterranean conditions. Pedobiologia 46:42–52. doi:10.1078/0031-4056-00112
Article
Google Scholar
De Deyn GB, Cornelissen JHC, Bardgett RD (2008) Plant functional traits and soil carbon sequestration in contrasting biomes. Ecol Lett 11:516–531. doi:10.1111/j.1461-0248.2008.01164.x
Article
PubMed
Google Scholar
Dickmann DI, Isebrands JG, Eckenwalder JE, Richardson J (2001) Poplar culture in North America. NRC Research Press, Ottawa
Google Scholar
Fornara DA, Tilman D (2008) Plant functional composition influences rates of soil carbon and nitrogen accumulation. J Ecol 96:314–322. doi:10.1111/j.1365-2745.2007.01345.x
CAS
Article
Google Scholar
Gachet S, Leduc A, Bergeron Y, Nguyen-Xuan T, Tremblay F (2007) Understory vegetation of boreal tree plantations: differences in relation to previous land use and natural forests. For Ecol Manag 242:49–57. doi:10.1016/j.foreco.2007.01.037
Article
Google Scholar
Garland JL (1996) Analytical approaches to the characterization of samples of microbial communities using patterns of potential C source utilization. Soil Biol Biochem 28:213–221. doi:10.1016/0038-0717(95)00112-3
CAS
Article
Google Scholar
Garland JL, Mills AL (1991) Classification and characterization of heterotrophic microbial communities on the basis of patterns of community-level sole-carbon-source utilization. Appl Environ Microbiol 57:2351–2359
CAS
PubMed
PubMed Central
Google Scholar
Gartner TB, Cardon ZG (2004) Decomposition dynamics in mixed-species leaf litter. Oikos 104:230–246
Article
Google Scholar
Gessner MO, Chauvet E (1993) Ergosterol-to-biomass conversion factors for aquatic hyphomycetes. Appl Environ Microbiol 59:502–507
CAS
PubMed
PubMed Central
Google Scholar
Gessner MO, Schmitt AL (1996) Use of solid-phase extraction to determine ergosterol concentrations in plant tissue colonized by fungi. Appl Environ Microbiol 62:415–419
CAS
PubMed
PubMed Central
Google Scholar
Gisin H (1960) Collembolen fauna Europas. Museum d’Histoire naturelle, Genève
Hättenschwiler S, Jorgensen HB (2010) Carbon quality rather than stoichiometry controls litter decomposition in a tropical rain forest. J Ecol 98:754–763. doi:10.1111/j.1365-2745.2010.01671.x
Article
Google Scholar
Hättenschwiler S, Vitousek P (2000) The role of polyphenols in terrestrial ecosystem nutrient cycling. Trends Ecol Evol 15:238–243
Article
PubMed
Google Scholar
Hättenschwiler S, Tiunov A, Scheu S (2005) Biodiversity and litter decomposition in terrestrial ecosystems. Annu Rev Ecol Evol Syst 36:191–218
Article
Google Scholar
Hoepting MK, Wagner RG, McLaughlin J, Pitt DG (2011) Timing and duration of herbaceous vegetation control in northern conifer plantations: 15th-year tree growth and soil nutrient effects. For Chron 87:398–413
Article
Google Scholar
Hoorens B, Aerts R, Stroetenga M (2002) Litter quality and interactive effects in litter mixtures: more negative interactions under elevated CO2? J Ecol 90:1009–1016
Article
Google Scholar
Jonsson M, Wardle DA (2008) Context dependency of litter-mixing effects on decomposition and nutrient release across a long-term chronosequence. Oikos 117:1674–1682. doi:10.1111/j.1600-0706.2008.16810.x
Article
Google Scholar
Kainulainen P, Holopainen JK (2002) Concentrations of secondary compounds in Scots pine needles at different stages of decomposition. Soil Biol Biochem 34:37–42
CAS
Article
Google Scholar
Kardol P, Reynolds WN, Norby RJ, Classen AT (2011) Climate change effects on soil microarthropod abundance and community structure. Appl Soil Ecol 47:37–44. doi:10.1016/j.apsoil.2010.11.001
Article
Google Scholar
Kuzyakov Y, Friedel JK, Stahr K (2000) Review of mechanisms and quantification of priming effects. Soil Biol Biochem 32:1485–1498. doi:10.1016/s0038-0717(00)00084-5
CAS
Article
Google Scholar
Labrecque M, Teodorescu TI, Babeux P, Cogliastro A, Daigle S (1994) Impact of herbaceous competition and drainage conditions on the early productivity of willows under short-rotation intensive culture. Can J For Res 24:493–501. doi:10.1139/x94-066
Article
Google Scholar
Lecerf A, Marie G, Kominoski JS, LeRoy CJ, Bernadet C, Swan CM (2011) Incubation time, functional litter diversity, and habitat characteristics predict litter-mixing effects on decomposition. Ecology 92:160–169. doi:10.1890/10-0315.1
Article
PubMed
Google Scholar
Lieffers VJ, Armstrong GW, Stadt KJ, Marenholtz EH (2008) Forest regeneration standards: are they limiting management options for Alberta’s boreal mixedwoods? For Chron 84:76–82
Article
Google Scholar
Marigo G (1973) Sur une méthode de fractionnement et d’estimation des composés phénoliques chez les végétaux. Analytica 2:106–110
McLauchlan K (2006) The nature and longevity of agricultural impacts on soil carbon and nutrients: a review. Ecosystems 9:1364–1382. doi:10.1007/s10021-005-0135-1
CAS
Article
Google Scholar
McMillan R, Quideau SA, MacKenzie MD, Biryukova O (2007) Nitrogen mineralization and microbial activity in oil sands reclaimed boreal forest soils. J Environ Qual 36:1470–1478. doi:10.2134/jew2006.0530
CAS
Article
PubMed
Google Scholar
Meier CL, Bowman WD (2008) Links between plant litter chemistry, species diversity, and below-ground ecosystem function. Proc Natl Acad Sci U S A 105:19780–19785
CAS
Article
PubMed
PubMed Central
Google Scholar
Milcu A, Partsch S, Langel R, Scheu S (2006) The response of decomposers (earthworms, springtails and microorganisms) to variations in species and functional group diversity of plants. Oikos 112:513–524. doi:10.1111/j.0030-1299.2006.14292.x
Article
Google Scholar
Nilsson MC, Wardle DA (2005) Understory vegetation as a forest ecosystem driver: evidence from the northern Swedish boreal forest. Front Ecol Environ 3:421–428. doi:10.1890/1540-9295(2005)003[0421:uvaafe]2.0.co;2
Article
Google Scholar
Pinheiro J, Bates D, DebRoy S, Sarkar D, the R Core team (2014) nlme: linear and nonlinear mixed effects models. R package version 3.1-115. http://CRAN.R-project.org/package=nlme
Preston-Mafham J, Boddy L, Randerson PF (2002) Analysis of microbial community functional diversity using sole-carbon-source utilisation profiles—a critique. FEMS Microbiol Ecol 42:1–14
CAS
PubMed
Google Scholar
R Development Core Team (2008) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria
Rey Benayas J, Martins A, Nicolau J, Schulz J (2007) Abandonment of agricultural land: an overview of drivers and consequences. CAB Reviews 2:1–14. doi:10.1079/pavsnnr20072057
Article
Google Scholar
Ruzicka S, Edgerton D, Norman M, Hill T (2000) The utility of ergosterol as a bioindicator of fungi in temperate soils. Soil Biol Biochem 32:989–1005
CAS
Article
Google Scholar
Scheu S, Simmerling F (2004) Growth and reproduction of fungal feeding Collembola as affected by fungal species, melanin and mixed diets. Oecologia 139:347–353. doi:10.1007/s00442-004-1513-7
Article
PubMed
Google Scholar
Shultz BJ, Lensing JR, Wise DH (2006) Effects of altered precipitation and wolf spiders on the density and activity of forest-floor Collembola. Pedobiologia 50:43–50. doi:10.1016/j.pedobi.2005.10.001
Article
Google Scholar
Soo T, Tullus A, Tullus H, Roosaluste E (2009) Floristic diversity responses in young hybrid aspen plantations to land-use history and site preparation treatments. For Ecol Manag 257:858–867. doi:10.1016/j.foreco.2008.10.018
Article
Google Scholar
Stefanowicz A (2006) The biology plates technique as a tool in ecological studies of microbial communities. Pol J Environ Stud 15:669–676
CAS
Google Scholar
Swift MJ, Heal OW, Anderson JM (1979) Decomposition in terrestrial ecosystems. Blackwell Scientific, Oxford
Google Scholar
Vouligny C, Gariépy S (2008) Abandoned farmland in Quebec—status and development options. Agriculture and Agri-Food Canada, Ottawa
Google Scholar
Wardle DA, Bonner KI, Nicholson KS (1997) Biodiversity and plant litter: experimental evidence which does not support the view that enhanced species richness improves ecosystem function. Oikos 79:247–258
Article
Google Scholar
Weih M (2004) Intensive short rotation forestry in boreal climates: present and future perspectives. Can J For Res 34:1369–1378. doi:10.1139/x04-090
Article
Google Scholar
Weih M, Karacic A, Munkert H, Verwijst T, Diekmann M (2003) Influence of young poplar stands on floristic diversity in agricultural landscapes (Sweden). Basic Appl Ecol 4:149–156. doi:10.1078/1439-1791-00157
Article
Google Scholar
Wise DH, Schaefer M (1994) Decomposition of leaf litter in a mull beech forest—comparison between canopy and herbaceous species. Pedobiologia 38:269–288
Google Scholar
Xiong YM, Xia HX, Li ZA, Cai XA, Fu SL (2008) Impacts of litter and understory removal on soil properties in a subtropical Acacia mangium plantation in China. Plant Soil 304:179–188. doi:10.1007/s11104-007-9536-6
CAS
Article
Google Scholar
Zhang DQ, Hui DF, Luo YQ, Zhou GY (2008) Rates of litter decomposition in terrestrial ecosystems: global patterns and controlling factors. J Plant Ecol 1:85–93
Article
Google Scholar
Zhao J, Wan SZ, Zhang CL, Liu ZF, Zhou LX, Fu SL (2014) Contributions of understory and/or overstory vegetations to soil microbial PLFA and nematode diversities in eucalyptus monocultures PLos One 9. doi:10.1371/journal.pone.0085513