Plant and Soil

, Volume 405, Issue 1–2, pp 47–63 | Cite as

Strategies for enhancement of switchgrass (Panicum virgatum L.) performance under limited nitrogen supply based on utilization of N-fixing bacterial endophytes

  • Scott LowmanEmail author
  • Seonhwa Kim-Dura
  • Chuansheng Mei
  • Jerzy Nowak
Regular Article


Background and aims

Sustainable agricultural production in the 21st century requires new approaches to reduce the use of synthetic nitrogen fertilizers. A newly recognized option is biological nitrogen fixation by commensal bacterial endophytes. The aim of this project was to explore strategies for supplying biologically fixed nitrogen to a bioenergy crop, switchgrass cv. Alamo.


The tested strategies were: 1) harnessing the ability of horizontal gene transfer between a known N-fixing bacterium, Burkholderia phymatum STM 815, and a switchgrass growth promoting endophyte, Burkholderia phytofirmans strain PsJN, and 2) isolation and utilization of naturally occurring N-fixing endophytes from seeds of switchgrass cv. Alamo.


The ability to grow on nitrogen free medium was successfully transferred from B. phymatum STM 815 to B. phytofirmans strain PsJN. The resulting bacterium, PsJN+, outperformed PsJN in switchgrass growth promotion in vitro on a low nitrogen (75 mg/L) medium (69 % increase). An endophyte with FAME and 16S sequence most similar to Sphingomonas sp. was isolated from seedlings derived from surface sterilized seeds germinated and grown in nitrogen-free hydroponic medium, and was also able to promote switchgrass growth under low nitrogen conditions (27 % increase over control).


A plant growth promoting endophyte Burkholderia phytofirmans strain PsJN transformed with genomic DNA containing the nif operon from Burkholderia phymatum STM 815, and Sphingomonas sp. strain NSL, a naturally occurring switchgrass seed endophyte capable of nitrogen fixation, were able to promote in vitro growth of switchgrass under low nitrogen conditions.


Atmospheric nitrogen fixation Bacterial endophytes Vertical transmission Horizontal gene transfer Burkholderia phytofirmans strain PsJN Growth promotion 



Thanks to Dr. Lionel Moulin for providing genomic DNA from B. phymatum STM 815 and Dr. Bingyu Zhao for providing seeds from switchgrass cultivars and accessions other than Alamo.


This work was funded through the Office of Science (BER), U.S. Department of Energy for Plant Feedstock Genomics for Bioenergy Program (DE-SC0004951), and operating funds from the Commonwealth of Virginia to the Institute for Advanced Learning and Research. Special Grants (2003–38891–02112, 2008-38891-19353 and 2009-38891-20092) and HATCH funds (Project No. VA-135816) from the United States Department of Agriculture.

Conflict of interest

The authors declare that they have no conflict of interest.


  1. Adhikari TB, Joseph CM, Yang G, Phillips DA, Nelson LM (2001) Evaluation of bacteria isolated from rice for plant growth promotion and biological control of seedling disease of rice. Can J Microbiol 47:916–924CrossRefPubMedGoogle Scholar
  2. Aguilar OM, Taormino J, Thöny B, Ramseier T, Hennecke H, Szalay AA (1990) The nifEN genes participating in FeMo cofactor biosynthesis and genes encoding dinitrogenase are part of the same operon in Bradyrhizobium species. Mol Gen Genet 224:413–420CrossRefPubMedGoogle Scholar
  3. Alberty RA (1994) Thermodynamics of of the nitrogenase reactions. J Biol Chem 269:7099–7102PubMedGoogle Scholar
  4. Bellenger JP, Wichard T, Xu Y, Kraepiel AML (2011) Essential metals for nitrogen fixation in a free-living N2-fixing bacterium: chelation, homeostasis and high use efficiency. Environ Microbiol 13:1395–1411CrossRefPubMedGoogle Scholar
  5. Bentley SD, Parkhill J (2004) Comparative genomic structure of prokaryotes. Annu Rev Genet 38:771–792CrossRefPubMedGoogle Scholar
  6. Berg G (2009) Plant-microbe interactions promoting plant growth and health: perspectives for controlled use of microorganisms in agriculture. Appl Microbiol Biotechnol 84:11–18CrossRefPubMedGoogle Scholar
  7. Bertalan M, Albano R, de Pádua V, Rouws L, Rojas C, Hemerly A. et al. (2009) Complete genome sequence of the sugarcane nitrogen-fixing endophyte gluconacetobacter diazotrophicus Pal5. BMC Genomics 10: 450CrossRefPubMedPubMedCentralGoogle Scholar
  8. Bhattacharjee RB, Singh A, Mukhopadhyay SN (2008) Use of nitrogen-fixing bacteria as biofertiliser for non-legumes: prospects and challenges. Appl Microbiol Biotechnol 80:199–209CrossRefPubMedGoogle Scholar
  9. Birck C, Malfois M, Svergun D, Samama J (2002) Insights into signal transduction revealed by the low resolution structure of the FixJ response regulator. J Mol Biol 321:447–457CrossRefPubMedGoogle Scholar
  10. Boddey RM, Deoliveira OC, Urquiaga S, Reis VM, Deolivares FL, Baldani VLD, Dobereiner J (1995) Biological nitrogen-fixation associated with sugar-cane and rice – contributions and prospects for improvement. Plant Soil 174:195–209CrossRefGoogle Scholar
  11. Bontemps C, Elliott GN, Simon MF, Dos Reis FBD, Gross E, Lawton RC, Neto NE, Loureiro MD, De Faria SM, Sprent JI, James EK, Young JPW (2010) Burkholderia species are ancient symbionts of legumes. Mol Ecol 19:44–52CrossRefPubMedGoogle Scholar
  12. Burgess BK, Lowe DJ (1996) Mechanism of molybdenum nitrogenase. Chem Rev 96:2983–3011CrossRefPubMedGoogle Scholar
  13. Chain PSG, Denef VJ, Konstantinidis KT, Vergez LM, Agullo L, et al. (2006) Burkholderia xenovorans LB400 harbors a multi-replicon, 9.73-Mbp genome shaped for versatility. Proc Natl Acad Sci U S A 103:15280–15287CrossRefPubMedPubMedCentralGoogle Scholar
  14. Chen L, Chen Y, Wood DW, Nester EW (2002) A new type IV secretion system promotes conjugal transfer in Agrobacterium tumefaciens. J Bacteriol 184:4838–4845CrossRefPubMedPubMedCentralGoogle Scholar
  15. Christie PJ, Vogel JP (2000) Bacterial type IV secretion: conjugation systems adapted to deliver effector molecules to host cells. Trends Microbiol 8:354–360CrossRefPubMedPubMedCentralGoogle Scholar
  16. Clark B, Foster JB (2009) Ecological imperialism and the global metabolic rift unequal exchange and the guano/nitrates trade. Int J Comp Sociol 50:311–334CrossRefGoogle Scholar
  17. Coenye T, Vandamme P (2003) Diversity and significance of burkholderia species occupying diverse ecological niches. Environ Microbiol 5:719–729CrossRefPubMedGoogle Scholar
  18. Compant S, Reiter B, Sessitsch A, Nowak J, Clément C, Barka EA (2005) Endophytic colonization of Vitis vinifera L. by plant growth-promoting bacterium Burkholderia sp. strain PsJN. Appl Environ Microbiol 71:1685–1693CrossRefPubMedPubMedCentralGoogle Scholar
  19. Compant S, Nowak J, Coenye T, Clement C, Barka EA (2008) Diversity and occurrence of burkholderia spp. in the natural environment. FEMS Microbiol Rev 32:607–626CrossRefPubMedGoogle Scholar
  20. Cotton MS, Rupnik K, Broach RB, Hu Y, Fay AW, Ribbe MW, Hales BJ (2009) VTVH-MCD study of the delta nifB delta nifZ MoFe protein from Azotobacter vinelandii. J Am Chem Soc 131:4558–4559CrossRefPubMedGoogle Scholar
  21. de Souza JT, Raaijmakers JM (2003) Polymorphisms within the prnD and pltC genes from pyrrolnitrin and pyoluteorin-producing Pseudomonas and Burkholderia spp. FEMS Microbiol Ecol 43:21–34CrossRefPubMedGoogle Scholar
  22. Debellé F, Moulin L, Mangin B, Dénarié J, Boivin C (2001) nod genes and nod signals and the evolution of the rhizobium legume symbiosis. Acta Biochim Pol 48:359–365PubMedGoogle Scholar
  23. Dixon R, Kahn D (2004) Genetic regulation of biological nitrogen fixation. Nat Rev Microbiol 2:621–631CrossRefPubMedGoogle Scholar
  24. Donner SD, Kucharik CJ (2008) Corn-based ethanol production compromises goal of reducing nitrogen export by the Mississippi river. Proc Natl Acad Sci U S A 105:4513–4518CrossRefPubMedPubMedCentralGoogle Scholar
  25. Doty SL, Oakley B, Xin G, Kang JW, Singleton G, Khan Z, et al. (2009) Diazotrophic endophytes of native black cottonwood and willow. Symbiosis 47:23–33CrossRefGoogle Scholar
  26. Eisenberg D, Almassy RJ, Janson CA, Chapman MS, Suh WS, Cascio D, Smith WW (1987) Some evolutionary relationships of the primary biological catalysts glutamine synthetase and RuBisCO. Cold Spring Harb Symp Quant Biol 52:483–490CrossRefPubMedGoogle Scholar
  27. Elliott GN, Chen WM, Chou JH, Wang HC, Sheu SY, Perin L, Reis VM, Moulin L, Simon MF, Bontemps C, Sutherland JM, Bessi R, de Faria SM, Trinick MJ, Prescott AR, Sprent JI, James EK (2007) Burkholderia phymatum is a highly effective nitrogen-fixing symbiont of mimosa spp. and fixes nitrogen ex planta. New Phytol 173:168–180CrossRefPubMedGoogle Scholar
  28. Elliott GN, Chou JH, Chen WM, Bloemberg GV, Bontemps C, Martinez-Romero E, Velazquez E, Young JPW, Sprent JI, James EK (2009) Burkholderia spp. are the most competitive symbionts of mimosa, particularly under N-limited conditions. Environ Microbiol 11:762–778CrossRefPubMedGoogle Scholar
  29. Ellis CN, Cooper VS (2010) Experimental adaptation of Burkholderia cenocepacia to onion medium reduces host range. Appl Environ Microbiol 76:2387–2396CrossRefPubMedPubMedCentralGoogle Scholar
  30. Fani R, Gallo R, Liò P (2000) Molecular evolution of nitrogen fixation: the evolutionary history of the nifD, nifK, nifE, and nifN genes. J Mol Evol 51:1–11PubMedGoogle Scholar
  31. FAO - High Level Expert Forum - How to Feed the World in 2050 (2009) Office of the director, agricultural development economics division economic and social development department viale delle terme di Caracalla, 00153 Rome, ItalyGoogle Scholar
  32. Fernández-López M, D'Haeze W, Mergaert P, Verplancke C, Promé JC, Van Montagu M, Holsters M (1996) Role of nodl and nodJ in lipo-chitooligosaccharide secretion in Azorhizobium caulinodans and Escherichia coli. Mol Microbiol 20:993–1000CrossRefPubMedGoogle Scholar
  33. Ferreira A, Quecine MC, Lacava PT, Oda S, Azevedo JL, Araujo WL (2008) Diversity of endophytic bacteria from eucalyptus species seeds and colonization of seedlings by Pantoea agglomerans. FEMS Microbiol Lett 287:8–14CrossRefPubMedGoogle Scholar
  34. Fields S (2004) Global nitrogen: cycling out of control. Environ Health Perspect 112:556–563CrossRefGoogle Scholar
  35. Frommel MI, Nowak J, Lazarovits G (1991) Growth enhancement and developmental modifications of in vitro grown potato (Solanum tuberosum spp. tuberosum) as affected by a nonfluorescent pseudomonas sp. Plant Physiol 96:928–936CrossRefPubMedPubMedCentralGoogle Scholar
  36. Gausch LM, de Felipe MR, Fernández-Pascual M (2001) Effects of different O2 concentrations on nitrogenase activity, respiration, and O2 diffusion resistance in Lupinus albus L. cv. Multolupa nodules. J Plant Physiol 158:1395–1402CrossRefGoogle Scholar
  37. Gonzalez V, Santamaria RI, Bustos P, Hernandez-Gonzalez I, Medrano-Soto A, Moreno-Hagelsieb G, Janga SC, Ramirez MA, Jimenez-Jacinto V, Collado-Vides J, Davila G (2006) The partitioned Rhizobium etli genome: genetic and metabolic redundancy in seven interacting replicons. Proc Natl Acad Sci U S A 103:3834–3839CrossRefPubMedPubMedCentralGoogle Scholar
  38. Govindarajan M, Balandreau J, Muthukumarasamy R, Revathi G, Lakshminarasimhan C (2006) Improved yield of micropropagated sugarcane following inoculation by endophytic Burkholderia vietnamiensis. Plant Soil 280:239–252CrossRefGoogle Scholar
  39. Govindarajan M, Balandreau J, Kwon SW, Weon HY, Lakshminarasimhan C (2008) Effects of the inoculation of Burkholderia vietnamensis and related endophytic diazotrophic bacteria on grain yield of rice. Microb Ecol 55:21–37CrossRefPubMedGoogle Scholar
  40. Grane’r G, Persson P, Meijer P, Alstrӧm S (2003) A study on microbial diversity in different cultivars of Brassica napus in relation to its wilt pathogen, Verticillium longisporum. FEMS Microbiol Lett 224:269–276CrossRefGoogle Scholar
  41. Green PJ, Pines O, Inouye M (1986) The role of antisense RNA in gene regulation. Annu Rev Biochem 55:569–597CrossRefPubMedGoogle Scholar
  42. Gyaneshwar P, Hirsch AM, Moulin L, Chen LM, Elliott GN, Bontemps C, Estrada-de los Santos P, Gross E, dos Reis FB, Sprent JI, Young JPW, James EK (2011) Legume-nodulating betaproteobacteria: diversity, host range, and future prospects. Mol Plant-Microbe Interact 24:1276–1288Google Scholar
  43. Haren L, Ton-Hoang B, Chandler M (2002) Integrating DNA: transposases and retroviral integrases. Annu Rev Microbiol 53:245–281CrossRefGoogle Scholar
  44. Huang TC, Lin RF, Chu MK, Chen HM (1999) Organization and expression of nitrogen-fixation genes in the aerobic nitrogen-fixing unicellular cyanobacterium Synechococcus sp. strain RF-1. Microbiol 145:743–753CrossRefGoogle Scholar
  45. Kim S, Lowman S, Hou G, Nowak J, Flinn B, Mei C (2012) Growth promotion and colonization of switchgrass (Panicum virgatum) cv. Alamo by bacterial endophyte Burkholderia phytofirmans strain PsJN. Biotechnol Biofuels 5:37CrossRefPubMedPubMedCentralGoogle Scholar
  46. Knoth JL, Kim SH, Ettl GJ, Doty SL (2014) Biological nitrogen fixation and biomass accumulation within poplar clones as a result of inoculations with diazotrophic endophyte consortia. New Phytol 201:599–609CrossRefPubMedGoogle Scholar
  47. Konstantinidis KT, Tiedje JM (2005) Genomic insights that advance the species definition for prokaryotes. Proc Natl Acad Sci U S A 102:2567–2572CrossRefPubMedPubMedCentralGoogle Scholar
  48. Kwon HJ, Tirumalai R, Landy A, Ellenberger T (1997) Flexibility in DNA recombination: structure of the lambda integrase catalytic core. Science 276:126–131CrossRefPubMedPubMedCentralGoogle Scholar
  49. Lee SH, Pulakat L, Parker KC, Gavini N (1998) Genetic analysis on the NifW by utilizing the yeast two-hybrid system revealed that the NifW of Azotobacter vinelandii interacts with the NifZ to form higher-order complexes. Biochem Biophys Res Commun 244:498–504CrossRefPubMedGoogle Scholar
  50. Lemanceau P, Corberand T, Gardan L, Latour X, Laguerre G, Boeufgras J, Alabouvette C (1995) Effect of two plant species, flax (Linum usitatissinum L.) and tomato (Lycopersicon esculentum mill.), on the diversity of soilborne populations of fluorescent pseudomonads. Appl Environ Microbiol 61:1004–1012PubMedPubMedCentralGoogle Scholar
  51. Li PL, Hwang I, Miyagi H, True H, Farrand S (1999) Essential components of the Ti plasmid trb system, a type IV macromolecular transporter. J Bacteriol 181:5033–5041PubMedPubMedCentralGoogle Scholar
  52. Liu Z, Pillay V, Nowak J (1995) In vitro culture of watermelon and cantaloupe with and without beneficial bacterium. Acta Horticult 402:58–60CrossRefGoogle Scholar
  53. Lowman JS, Lara-Chavez A, Kim-Dura S, Flinn B, Nowak J, Mei C (2015) Switchgrass field performance on two soils as affected by bacterization of seedlings with Burkholderia phytofirmans strain PsJN. BioEnergy Research. doi: 10.1007/s12155-014-9536-3 Google Scholar
  54. Ludden PW, Roberts GP (1989) Regulation of nitrogenase activity by reversible ADP-ribosylation. Curr Top Cell Regul 30:23–56CrossRefPubMedGoogle Scholar
  55. Martinez-Aguilar L, Diaz R, Pena-Cabriales JJ, Estrada-de los Santos P, Dunn MF, Caballero-Mellado J (2008) Multichromosomal genome structure and confirmation of diazotrophy in novel plant-associated Burkholderia species. Appl Environ Microbiol 74:4574–4579CrossRefPubMedPubMedCentralGoogle Scholar
  56. Menard A, Monnez C, Santos P, Segonds C, Caballero-Mellado J, LiPuma JJ, Chabanon G, Cournoyer B (2007) Selection of nitrogen-fixing deficient Burkholderia vietnamiensis strains by cystic fibrosis patients: involvement of nif gene deletions and auxotrophic mutations. Environ Microbiol 9:1176–1185CrossRefPubMedGoogle Scholar
  57. Mitter B, Petric A, Chain P, Trognitz F, Nowak J, Compant S, Sessitsch A (2013) Genome analysis, ecology, and plant growth promotion of the endophyte Burkholderia phytofirmans strain PsJN. In: de Bruijn FJ (ed) Molecular microbial ecology of the rhizosphere: Volume 1 & 2, Chapter 81. Wiley, Hoboken, pp. 865–874. doi: 10.1002/9781118297674.ch81 ISBN: 9781118296172CrossRefGoogle Scholar
  58. Morrett E, Segovia L (1993) The sigma 54 bacterial enhancer-binding protein family: mechanism of action and phylogenetic relationship of their functional domains. J Bacteriol 175:6067–6074Google Scholar
  59. Naveed M, Hussain MB, Zahir ZA, Mitter B, Sessitsch A (2014a) Drought stress amelioration in wheat through inoculation with Burkholderia phytofirmans strain PsJN. Plant Growth Regul 73:121–131CrossRefGoogle Scholar
  60. Naveed M, Mitter B, Reichenauer TG, Wieczorek K, Sessitsch A (2014b) Increased drought stress resilience of maize through endophytic colonization by Burkholderia phytofirmans PsJN and Enterobacter sp. FD17. Environ Exp Bot 97:30–39CrossRefGoogle Scholar
  61. Nowak J, Sharma VK, A'Hearn E (2004) Endophyte enhancement of transplant performance in tomato, cucumber and sweet pepper. Acta Horticult 631:253–263CrossRefGoogle Scholar
  62. Pappas KM, Weingart CL, Winans SC (2004) Chemical communication in proteobacteria: biochemical and structural studies of signal synthases and receptors required for intercellular signalling. Mol Microbiol 53:755–769CrossRefPubMedGoogle Scholar
  63. Parke JL, Gurian-Sherman D (2001) Diversity of the Burkholderia cepacia complex and implications for risk assessment of biological control strains. Annu Rev Phytopathol 39:225–258CrossRefPubMedGoogle Scholar
  64. Pillay VK, Nowak J (1997) Inoculum density, temperature, and genotype effects on in vitro growth promotion and epiphytic and endophytic colonization of tomato (Lycopersicon esculentum L) seedlings inoculated with a pseudomonad bacterium. Can J Microbiol 43:354–361CrossRefGoogle Scholar
  65. Poupin MJ, Timmermann T, Vega A, Zuñiga A, González B (2013) Effects of the plant growth-promoting bacterium Burkholderia phytofirmans PsJN throughout the life cycle of Arabidopsis thaliana. PLoS One 8:e69435CrossRefPubMedPubMedCentralGoogle Scholar
  66. Ranganayaki S, Mohan C (1981) Effect of sodium molybdate on microbial fixation of nitrogen microbiol 8:607–610Google Scholar
  67. Rangaraj P, Ruttimann-Johnson C, Shah VK, Ludden PW (2001) Accumulation of 55Fe-labeled precursors of the iron-molybdenum cofactor of nitrogenase on NifH and NifX of Azotobacter vinelandii. J Biol Chem 276:15968–15974CrossRefPubMedGoogle Scholar
  68. Raymond J, Siefert JL, Staples CR, Blankenship RE (2004) The natural history of nitrogen fixation. Mol Biol Evol 21:541–554CrossRefPubMedGoogle Scholar
  69. Rees DC, Howard JB (2000) Nitrogenase: standing at the crossroads. Curr Opin Chem Biol 4:559–566CrossRefPubMedGoogle Scholar
  70. Rejesus RM, Hornbaker RH (1999) Economic and environmental evaluation of alternative pollution-reducing nitrogen management practices in central Illinois. Ag Ecosys Environ 75:41–53CrossRefGoogle Scholar
  71. Richter GY, Björklöf K, Romantschuk M, Mills D (1998) Insertion specificity and trans-activation of IS801. Mol Gen Genet 260:381–387CrossRefPubMedGoogle Scholar
  72. Riggs PJ, Chelius MK, Iniguez AL, Kaeppler SM, Triplett EW (2001) Enhanced maize productivity by inoculation with diazotrophic bacteria. Aust J Plant Physiol 28:829–836Google Scholar
  73. Roesch LF, Camargo W, Bento FM, Triplett EW (2008) Biodiversity of diazotrophic bacteria within the soil, root and stem of field-grown maize. Plant Soil 302:91–104CrossRefGoogle Scholar
  74. Santhi S, Sumathi R, Rajeshkannan C, Manivachakam P, Murugesan S (2012) Profiling metabolites in different day cultures of a root endophyte, frankia brunchorst from Casuarina equisetifolia L. using GC-MS-MS. Euro J. Exp Biol 2:539–542Google Scholar
  75. Sharma V, Nowak J (1998) Enhancement of verticillium wilt resistance in tomato transplants by in vitro co-culture of seedlings with a plant growth promoting rhizobacterium (Pseudomonas sp. strain PsJN). Can J Microbiol 44:528–536CrossRefGoogle Scholar
  76. Stricker O, Masepohl B, Klipp W, Böhme H (1997) Identification and characterization of the nifV-nifZ-nifT gene region from the filamentous cyanobacterium Anabaena sp. strain PCC 7120. J Bacteriol 179:2930–2937PubMedPubMedCentralGoogle Scholar
  77. Taghavi S, Barac T, Greenberg B, Borremans B, Vangronsveld J, van der Lelie D (2005) Horizontal gene transfer to endogenous endophytic bacteria from poplar improves phytoremediation of toluene. Appl Environ Microbiol 71:8500–8505CrossRefPubMedPubMedCentralGoogle Scholar
  78. Tatusova T, Ciufo S, Fedorov B, O'Neill K, Tolstoy I (2015) RefSeq microbial genomes database: new representation and annotation strategy. Nucleic Acids Res 43:3872CrossRefPubMedPubMedCentralGoogle Scholar
  79. Thornley RNF, Lowe DJ (1985) In: Spiro TG, ed. Molybdenum enzymes. In: Kinetics and mechanisms of the nitrogenase enzyme system. Wiley, New York, pp. 221–284Google Scholar
  80. Tilman D, Cassman KG, Matson PA, Naylor R, Polasky S (2002) Agricultural sustainability and intensive production practices. Nature 418:671–677CrossRefPubMedGoogle Scholar
  81. Tomb JF, White O, Kerlavage AR, Clayton RA, Sutton GG, Fleischmann RD, Venter JC (1997) The complete genome sequence of the gastric pathogen Helicobacter pylori. Nature 388:539–547CrossRefPubMedGoogle Scholar
  82. Tonitto C, David MB, Drinkwater LE (2006) Replacing bare fallows with cover crops in fertilizer-intensive cropping systems: a meta-analysis of crop yield and N dynamics. Agric Ecosyst Environ 112:58–72CrossRefGoogle Scholar
  83. Tyrrell R, Verschueren KH, Dodson EJ, Murshudov GN, Addy C, Wilkinson AJ (1997) The structure of the cofactor-binding fragment of the LysR family member, CysB: a familiar fold with a surprising subunit arrangement. Structure 5:1017–1032CrossRefPubMedGoogle Scholar
  84. Varga S, Kora’nyi S, Preininger E, Gyurja ’n I (1994) Artificial associations between daucus and nitrogen-fixing azotobacter cells in vitro. Physiol Plant 90:786–790CrossRefGoogle Scholar
  85. Weekley J, Gabbard J, Nowak J (2012) Micro-level management of agricultural inputs: emerging approaches. Agronomy 2:321–357CrossRefGoogle Scholar
  86. Weilharter A, Mitter B, Shin MV, Chain PSG, Nowak J, Sessitsch A (2011) Complete genome sequence of the plant growth-promoting endophyte Burkholderia phytofirmans strain PsJN. J Bacteriol 193:3383–3384CrossRefPubMedPubMedCentralGoogle Scholar
  87. Winsor GL, Khaira B, Van Rossum T, Lo R, Whiteside MD, Brinkman FS (2008) The burkholderia genome database: facilitating flexible queries and comparative analyses. Bioinformatics 24:2803–2804CrossRefPubMedPubMedCentralGoogle Scholar
  88. Wong-Villarreal A, Caballero-Mellado J (2010) Rapid identification of nitrogen-fixing and legume-nodulating Burkholderia species based on PCR 16S rRNA species-specific oligonucleotides. Syst Appl Microbiol 33:35–43CrossRefPubMedGoogle Scholar
  89. Wood DW, Setubal C, Kaul R, Monks DE, Kitajima JP, Okur VK, Olson MV (2001) The genome of the natural genetic engineer Agrobacterium tumefaciens C58. Science 294:2317–2323CrossRefPubMedGoogle Scholar
  90. Xiong J, Fischer WM, Inoue K, Nakahara M, Bauer CE (2000) Molecular evidence for the early evolution of photosynthesis. Science 289:1724–1730CrossRefPubMedGoogle Scholar
  91. Yakunin AF, Laurinavichene TV, Tsygankov AA, Hallenbeck PC (1999) The presence of ADP-ribosylated Fe protein of nitrogenase in rhodobacter capsulatus is correlated with cellular nitrogen status. J Bacteriol 181(7):1994–2000PubMedPubMedCentralGoogle Scholar
  92. Zehr JP, Jenkins BD, Short SM, Steward GF (2003) Nitrogenase gene diversity and microbial community structure: a cross-system comparison. Environ Microbiol 5:539–554CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Scott Lowman
    • 1
    • 2
    Email author
  • Seonhwa Kim-Dura
    • 1
  • Chuansheng Mei
    • 1
    • 2
  • Jerzy Nowak
    • 2
  1. 1.The Center for Sustainable and Renewable ResourcesThe Institute for Advanced Learning and ResearchDanvilleUSA
  2. 2.Department of HorticultureVirginia TechBlacksburgUSA

Personalised recommendations