Skip to main content

Cluster-root formation and carboxylate release in Euplassa cantareirae (Proteaceae) from a neotropical biodiversity hotspot

Abstract

Background and Aims

Euplassa cantareirae is a Neotropical Proteaceae, native to the Restinga forest in Brazil and it experiences a wide array of adverse environmental conditions, especially seasonal flooding and low nutrient availability. We aimed to investigate the effects of phosphorus (P) supply on plant growth and cluster root formation, as well as to characterize the main carboxylates released by the cluster roots of this species.

Methods

We conducted a greenhouse experiment where seedlings were grown in a sandy soil and watered three times a week with nutrient solution with the following P concentrations: 0, 10, 50 or 100 μM. Cluster-root production per plant, tissue P concentrations, growth parameters and carboxylate release were recorded and analyzed.

Results

Remarkably, cluster-root formation, biomass production and leaf P concentration did not depend on P supply. These results differ from what have been found for almost all other investigated species, except for one other plant that inhabits a similar habitat in south-western Australia, Viminaria juncea (Fabaceae). The carboxylates that were found in the rhizosphere were similar to those reported before for other Proteaceae.

Conclusions

Euplassa cantareirae is a Neotropical Proteaceae producing cluster roots, and contrary to what is known for other family members, it does not appear to regulate its cluster-root formation, growth and leaf P concentration by the soil P availability.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Abrahão A, Lambers H, Sawaya ACHF et al (2014) Convergence of a specialized root trait in plants from nutrient-impoverished soils: phosphorus-acquisition strategy in a nonmycorrhizal cactus. Oecologia 176:345–355

    Article  PubMed  Google Scholar 

  2. Almeida F (1964) Fundamentos geológicos do relevo paulista. Bol Inst Geogr Geol 41:169–263

    Google Scholar 

  3. Alves LF, Vieira S, Scaranello M et al (2010) Forest structure and live aboveground biomass variation along an elevational gradient of tropical Atlantic moist forest (Brazil). For Ecol Manag 260:679–691

    Article  Google Scholar 

  4. Assis MA, Prata EMB, Pedroni F et al (2011) Florestas de restinga e de terras baixas na planície costeira do sudeste do Brasil: vegetação e heterogeneidade ambiental. Biota Neotrop 11:103–121

    Article  Google Scholar 

  5. Bencke CSC, Morellato LPC (2002) Estudo comparativo da fenologia de nove espécies arbóreas em três tipos de floresta atlântica no sudeste do Brasil 1. Rev Bras Bot 25:237–248

    Article  Google Scholar 

  6. Bizuti DTG (2011) Ciclagem do fósforo em Floresta Densa dos Núcleos de Picinguaba e Santa Virgínia – SP. Escola Superior de Agricultura “Luiz de Queiroz”

  7. Bonilha RM, Casagrande JC, Soares MR, Reis-Duarte RM (2012) Characterization of the soil fertility and root system of restinga forests. Rev Bras Ciênc Solo 36:1804–1813

    CAS  Article  Google Scholar 

  8. De Campos MCR, Pearse SJ, Oliveira RS, Lambers H (2013) Viminaria juncea does not vary its shoot phosphorus concentration and only marginally decreases its mycorrhizal colonization and cluster-root dry weight under a wide range of phosphorus supplies. Ann Bot 111:801–9

    Article  PubMed  PubMed Central  Google Scholar 

  9. De Oliveira VC, Joly CA (2010) Flooding tolerance of Calophyllum brasiliense Camb. (Clusiaceae): Morphological, physiological and growth responses. Trees Struct Funct 24:185–193

    Article  Google Scholar 

  10. Delgado M, Suriyagoda L, Zúñiga-Feest A et al (2014) Divergent functioning of Proteaceae species: the South American Embothrium coccineum displays a combination of adaptive traits to survive in high-phosphorus soils. Funct Ecol 28:1356–1366

    Article  Google Scholar 

  11. Dessureault-Rompré J, Nowack B, Schulin R, Luster J (2007) Spatial and temporal variation in organic acid anion exudation and nutrient anion uptake in the rhizosphere of Lupinus albus L. Plant Soil 301:123–134

    Article  Google Scholar 

  12. Donoso-Ñanculao G, Castro M, Navarrete D et al (2010) Seasonal induction of Cluster Roots in Embothrium coccineum development. Chil J Agric Res 70:559–566

    Article  Google Scholar 

  13. Gerke J (1992) Orthophosphate and organic phosphate in the soil solution of four sandy soils in relation to pH-evidence for humic-FE-(AL-) phosphate complexes. Commun Soil Sci Plant Anal 23:601–612

    CAS  Article  Google Scholar 

  14. Gerke J (2015) The acquisition of phosphate by higher plants: effect of carboxylate release by the roots. A critical review. J Plant Nutr Soil Sci 178:351–364

    CAS  Article  Google Scholar 

  15. Gerke J, Beiûner L, Römer W (2000) The quantitative effect of chemical phosphate mobilization by carboxylate anions on P uptake by a single root. I. The basic concept and determination of soil parameters. J Plant Nutr Soil Sci 163:207–212

    CAS  Article  Google Scholar 

  16. Joly C, Assis M, Bernacci L et al (2012) Florística e fitossociologia em parcelas permanentes da Mata Atlântica do sudeste do Brasil ao longo de um gradiente altitudinal. Biota Neotrop 12:125–145

    Article  Google Scholar 

  17. Jones DL (1998) Organic acids in the rhizosphere – a critical review. Plant Soil 205:25–44

    CAS  Article  Google Scholar 

  18. Lambers H, Brundrett MC, Raven JA, Hopper SD (2010) Plant mineral nutrition in ancient landscapes: high plant species diversity on infertile soils is linked to functional diversity for nutritional strategies. Plant Soil 334:11–31

    CAS  Article  Google Scholar 

  19. Lambers H, Clode P, Hawkins H et al (2015) Metabolic adaptations of the non-mycotrophic Proteaceae with low phosphorus availability. Annu Plant Rev 48:289–336

    Google Scholar 

  20. Lamont B (1972) The effect of soil nutrients on the production of proteoid roots by Hakea species. Aust J Bot 20:27

    CAS  Article  Google Scholar 

  21. Mardegan SF (2013) Variação na dinâmica do nitrogênio e nos atributos foliares em fisionomias de restinga da região Sudeste do Brasil. Dissertation Universidade de São Paulo

  22. Martins SC (2010) Caracterização dos solos e serapilheira ao longo do gradiente altitudinal da Mata Atlântica, estado de São Paulo. Dissertation Universidade de São Paulo

  23. Motomizu S, Wakimoto T, Tgei K (1983) Spectrophotometric determination of phosphate in river waters with Molybdate and Malachite Green. Analyst 108:361–367

    CAS  Article  Google Scholar 

  24. Myers N, Mittermeier RA, Mittermeier CG et al (2000) Biodiversity hotspots for conservation priorities. Nature 403:853–8

    CAS  Article  PubMed  Google Scholar 

  25. Neumann G, Massonneau A, Langlade N et al (2000) Physiological aspects of Cluster Root function and development in phosphorus-deficient white Lupin (Lupinus albus L.). Ann Bot 85:909–919

    CAS  Article  Google Scholar 

  26. Oliveira-Filho AT, Fontes MA (2000) Patterns of floristic differentiation among Atlantic forests in Southeastern Brazil and the influence of climate. 32:793–810

  27. Prance GT, Amorim AMA (2015) Proteaceae. In: List. Espécies da Flora do Bras. Jard. Botânico do Rio Janeiro. http://www.floradobrasil.jbrj.gov.br/jabot/floradobrasil/FB13785. Accessed 25 Jan 2015

  28. Prance GT, Plana V (1998) The American Proteaceae. Aust Syst Bot 11:287–299

    Article  Google Scholar 

  29. Prance GT, Plana V, Edwards KS, Pennington RT (1997) Monograph of Neotropical Proteaceae. Flora Neotrop 100:1–220

    Google Scholar 

  30. Purnell M (1960) Studies of the family proteaceae. l. Anatomy and morphologyof the roots of some Victorian species. Aust J Bot 8:38–50

    Article  Google Scholar 

  31. R Core Team (2012) R: a language and environment for statistical computing

  32. Ramirez GC, Valenzuela FE, San Martin PC (2004) Nuevos antecedentes sobre desarrollo temprano, morfología y anatomía de las raíces proteiformes de Gevuina avellana. Agro Sur 32:33–44

    Article  Google Scholar 

  33. Ribeiro MC, Metzger JP, Martensen AC et al (2009) The Brazilian Atlantic Forest: How much is left, and how is the remaining forest distributed? Implications for conservation. Biol Conserv 142:1141–1153

    Article  Google Scholar 

  34. Rizzini C (1997) Tratado de Fitogeografia do Brasil: aspectos ecológicos, sociológicos e florísticos. Âmbito Cultural Edições Ltda, Rio de Janeiro

    Google Scholar 

  35. Roelofs RFR, Rengel Z, Cawthray GR et al (2001) Exudation of carboxylates in Australian Proteaceae: chemical compisition. Plant Cell Environ 24:891–903

    CAS  Article  Google Scholar 

  36. Ryan MH, Tibbett M, Edmonds-Tibbett T et al (2012) Carbon trading for phosphorus gain: the balance between rhizosphere carboxylates and arbuscular mycorrhizal symbiosis in plant phosphorus acquisition. Plant Cell Environ 35:2170–2180

    CAS  Article  PubMed  Google Scholar 

  37. Saenz GDCV (2013) Uso de água de três espécies arbóreas de uma restinga florestal em Ubatuba, SP. Dissertation Universidade Estadual de Campinas

  38. Scarano FR (2002) Structure, function and floristic relationships of plant communities in stressful habitats marginal to the Brazilian Atlantic Rainforest. Ann Bot 90:517–524

    Article  PubMed  PubMed Central  Google Scholar 

  39. Scarano FR (2009) Plant communities at the periphery of the Atlantic rain forest: Rare-species bias and its risks for conservation. Biol Conserv 142:1201–1208

    Article  Google Scholar 

  40. Shane MW, Lambers H (2005) Cluster roots: a curiosity in context. Plant Soil 274:101–125

    CAS  Article  Google Scholar 

  41. Shane MW, De Vos M, De Roock S et al (2003) Effects of external phosphorus supply on internal phosphorus concentration and the initiation, growth and exudation of cluster roots in Hakea prostrata R. Br. Plant Soil 248:209–219

    CAS  Article  Google Scholar 

  42. Shane MW, Mccully ME, Lambers H, Sciences A (2004) Tissue and cellular phosphorus storage during development of phosphorus toxicity in Hakea prostrata (Proteaceae). J Exp Bot 55:1033–1044

    CAS  Article  PubMed  Google Scholar 

  43. Silva ED, Tozzi AMGA (2009) Leguminosae in Picinguaba, Serra Do Mar State Park, São Paulo. Braz Anais Congr Lat Am Ecol 1:1–3

    CAS  Google Scholar 

  44. Steffens D, Hütsch BW, Eschholz T et al (2005) Water logging may inhibit plant growth primarily by nutrient deficiency rather than nutrient toxicity. Plant Soil Environ 51:545–552

    CAS  Google Scholar 

  45. Turner BL, Romero TE (2009) Short-term changes in extractable inorganic nutrients during storage of tropical rain forest soils. Soil Sci Soc Am J 73:1972

    CAS  Article  Google Scholar 

  46. Weston PH (2014) What has molecular systematics contributed to our Knowledgeof the plant family Proteaceae? Mol Plant Taxon Methods Protoc Methods Mol Biol 1115:233–255

    Google Scholar 

  47. Zúñiga-Feest A, Delgado M, Bustos-Salazar A, Ochoa V (2015) The southern South American Proteaceae, Embothrium coccineum exhibits intraspecific variation in growth and cluster-root formation depending on climatic and edaphic origins. Plant Soil

Download references

Acknowledgments

We thank FAPESP (Fundo de Apoio à Pesquisa do Estado de São Paulo) for the grant to RS Oliveira (FAPESP 2010/17204-0) and for the scholarship granted to Patricia de B. Costa (2011/17037-9), for the use of the UHPLC-MS equipment (FAPESP/BIOEN grant 2008/58035-6) and Conselho Nacional de Desenvolvimento Científico e Tecnológico (Grant CNPq 474670/2008-2) to Rafael S. Oliveira. We also thank Instituto Florestal de São Paulo for the research permit to work at Parque Estadual da Serra do Mar. We are grateful to Caio G Pereira, Felipe H Crivelari and all the colleagues that contributed to the development of this study.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Rafael S. Oliveira.

Additional information

Responsible Editor: Antony Van der Ent.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Costa, P.d.B., Abrahão, A., Viani, R.A.G. et al. Cluster-root formation and carboxylate release in Euplassa cantareirae (Proteaceae) from a neotropical biodiversity hotspot. Plant Soil 403, 267–275 (2016). https://doi.org/10.1007/s11104-015-2630-2

Download citation

Keywords

  • Atlantic forest
  • Root exudation
  • Phosphorus
  • Proteoid roots