Plant and Soil

, Volume 398, Issue 1–2, pp 25–33 | Cite as

Symbiovar loti genes are widely spread among Cicer canariense mesorhizobia, resulting in symbiotically effective strains

  • Pilar Martínez-Hidalgo
  • Juan Pérez-Yépez
  • Encarna Velázquez
  • Ricardo Pérez-Galdona
  • Eustoquio Martínez-Molina
  • Milagros León-Barrios
Regular Article


Background and aims

Cicer canariense has been shown to be a promiscuous legume. The symbiotic characteristics of several C. canariense mesorhizobial genospecies harbouring similar symbiotic genes are studied.


Comparative analysis of nodA and nifH gene phylogenies, and characterization of the symbiotic phenotypes on the basis of nodulation and nitrogen fixation was performed.


Phylogenetic analyses of the nodulation gene nodA was in complete agreement with those previously done on nodC in grouping these mesorhizobia within symbiovar loti. In the nifH phylogeny, however, these strains were resolved into two subgroups named nifH-1 and nifH-2. Subgroup nifH-1 contained strains from two genospecies and correlates with symbiovar loti, as it clustered with Mesorhizobium reference strains nodulating Lotus corniculatus. In contrast, subgroup nifH-2 contained strains of the other seven genospecies without reference strains and formed a distant branch on its own. Strains combining symbiovar loti genes in any chromosomal background effectively nodulated C. canariense, although with significant differences in nitrogen fixation capabilities.


Symbiovar loti genes are the most widely spread in the mesorhizobia that nodulate C. canariense in its natural habitat. They included two variants of the nifH gene and were found to be associated with nine chromosomal backgrounds (genospecies), resulting in strains showing different symbiotic effectiveness. Mesorhizobium tamadayense symbiovar loti strains were the most effective in this legume.


Cicer canariense Wild chickpea Mesorhizobium Symbiovar loti Nodulation Symbiotic phenotype 



This work has been supported by from the Ministerio de Medio Ambiente y Medio Rural y Marino, Organismo Autónomo de Parques Nacionales (Ref. 111/2010). PMH was recipient of a contract from a MICINN Grant. We thank Dulce Rodriguez-Navarro for providing Lotus corniculatus seeds.

Supplementary material

11104_2015_2614_MOESM1_ESM.doc (4 mb)
ESM 1 (DOC 4070 kb)


  1. Armas-Capote N, Pérez-Yépez J, Martínez-Hidalgo P, Garzón-Machado V, del Arco-Aguilar M, Velázquez E, León-Barrios M (2014) Core and symbiotic genes reveal nine Mesorhizobium genospecies and three symbiotic lineages among the rhizobia nodulating Cicer canariense in its natural habitat (La Palma, Canary Is.). Syst Appl Microbiol 37:140–148CrossRefPubMedGoogle Scholar
  2. Barny MA, Schoonejans E, Economou A, Johnston AWB, Downie JA (1996) The C-terminal domain of the Rhizobium leguminosarum chitin synthase NodC is important for function and determines the orientation of the N-terminal region in the inner membrane. Mol Microbiol 19:443–453CrossRefPubMedGoogle Scholar
  3. Cobo-Díaz JF, Martínez-Hidalgo P, Fernández-González AJ, Martínez-Molina E, Toro N, Velázquez E, Fernández-López M (2014) The endemic Genista versicolor from Sierra Nevada National Park in Spain is nodulated by putative new Bradyrhizobium species and a novel symbiovar (sierranevadense). Syst Appl Microbiol 37:177–185CrossRefPubMedGoogle Scholar
  4. Donate-Correa J, León-Barrios M, Hernández M, Pérez-Galdona R, del Arco-Aguilar M (2007) Different Mesorhizobium species sharing the same symbiotic genes nodulate the shrub legume Anagyris latifolia. Syst Appl Microbiol 30:615–623CrossRefPubMedGoogle Scholar
  5. Dover RC, Breil BT, Triplet EW (1994) DNA sequence of the common nodulation genes of Bradyrhizobium elkanii and their phylogenetic relationship with other nodulating bacteria. Mol Plant Microb Interact 7:564–572CrossRefGoogle Scholar
  6. Estrella MJ, Muñoz S, Soto MJ, Ruiz O, Sanjuan J (2009) Genetic diversity and host range of rhizobia nodulating Lotus tenuis in typical soils of the Salado River basin (Argentina). Appl Environ Microbiol 75(4):1088–1098CrossRefPubMedGoogle Scholar
  7. Gibson AH (1987) Evaluation of nitrogen fixation by legumes in the greenhouse and growth chamber. In: Symbiotic nitrogen fixation technology. Marcel Dekker, New York, pp 321–363Google Scholar
  8. Guma IR, Padrón-Mederos MA, Santos-Guerra A, Reyes-Betancort JA (2010) Evaluation of methods to remove hardseededness in Cicer canariense, a perennial wild relative of chickpea. Seed Sci Technol 38:209–213CrossRefGoogle Scholar
  9. Han TX, Han LL, Wu LJ, Chen WF, Sui XH, Gu JG, Wang ET, Chen WX (2008) Mesorhizobium gobiense sp. nov. and Mesorhizobium tarimense sp. nov., isolated from wild legumes growing in desert soils of Xinjiang, China. Int J Syst Evol Microbiol 58:2610–2618CrossRefPubMedGoogle Scholar
  10. Haukka K, Lindstrom K, Young JPW (1998) Three phylogenetic groups of nodA and nifH genes in Sinorhizobium and Mesorhizobium isolates from leguminous trees growing in Africa and Latin America. Appl Environ Microbiol 64:419–426PubMedPubMedCentralGoogle Scholar
  11. Hennecke H, Kaluza K, Thony B, Fuhrmann M, Ludwing W, Stackebrandt (1985) Concurrent evolution of nitrogenase genes and16SrRNA in Rhizobium species and other nitrogen fixing bacteria. Arch Microbiol 142:342–348CrossRefGoogle Scholar
  12. Kaneko T, Nakamura Y, Sato S, Asamizu E, Kato T et al (2000) Complete genome structure of the nitrogen-fixing symbiotic bacterium Mesorhizobium loti. DNA Res 7:331–338CrossRefPubMedGoogle Scholar
  13. Kimura M (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120CrossRefPubMedGoogle Scholar
  14. Laguerre G, Nour SM, Macheret V, Sanjuan J, Drouin P, Amarger N (2001) Classification of rhizobia based on nodC and nifH gene analysis reveals a close phylogenetic relationship among Phaseolus vulgaris symbionts. Microbiology 147:981–993CrossRefPubMedGoogle Scholar
  15. Laranjo M, Alexandre A, Rivas R, Velázquez E, Young JPW, Oliveira S (2008) Chickpea rhizobia symbiosis genes are highly conserved across multiple Mesorhizobium species. FEMS Microbiol Ecol 66:391–400CrossRefPubMedGoogle Scholar
  16. Laranjo M, Young JPW, Oliveira S (2012) Multilocus sequence analysis reveals multiple symbiovars within Mesorhizobium species. Syst Appl Microbiol 35(6):359–367CrossRefPubMedGoogle Scholar
  17. León-Barrios M, Lorite MJ, Donate-Correa J, Sanjuan J (2009) Ensifer meliloti bv. lancerottense establishes nitrogen-fixing symbiosis with Lotus endemic to the Canary Islands and shows distinctive symbiotic genotypes and host range. Syst Appl Microbiol 32:413–420CrossRefPubMedGoogle Scholar
  18. Lorite MJ, Donate-Correa J, del Arco-Aguilar M, Pérez-Galdona R, Sanjuan J, León-Barrios M (2010a) Lotus endemic to the Canary Islands are nodulated by diverse and novel rhizobial species and symbiotypes. Syst Appl Microbiol 33:282–290CrossRefPubMedGoogle Scholar
  19. Lorite MJ, Muñoz S, Olivares J, Soto MJ, Sanjuan J (2010b) Characterization of strains unlike Mesorhizobium loti that nodulate Lotus in saline soils of Granada, Spain. Appl Environ Microbiol 76:4019–4026CrossRefPubMedPubMedCentralGoogle Scholar
  20. Moulin L, Béna G, Boivin-Masson C, Stepkowski T (2004) Phylogenetic analyses of symbiotic nodulation genes support vertical and lateral gene co-transfer within the Bradyrhizobium genus. Mol Phylogenet Evol 30:720–732CrossRefPubMedGoogle Scholar
  21. Nandasena KG, O’Hara GW, Tiwari RP, Yates RJ, Howieson JG (2001) Phylogenetic relationships of three bacterial strains isolated from the pasture legume Biserrula pelecinus L. Int J Syst Evol Microbiol 51:1983–1986CrossRefPubMedGoogle Scholar
  22. Nandasena KG, O’Hara GW, Tiwari RP, Howieson JG (2006) Rapid in situ evolution of nodulating strains for Biserrula pelecinus L. through lateral transfer of a symbiosis island from the original mesorhizobial inoculant. Appl Environ Microbiol 72:7365–7367CrossRefPubMedPubMedCentralGoogle Scholar
  23. Peix A, Ramírez-Bahena MH, Velázquez E, Bedmar EJ (2015) Bacterial associations with legumes. Crit Rev Plant Sci 34:17–42CrossRefGoogle Scholar
  24. Pérez-Yépez J, Armas-Capote N, Velázquez E, Pérez-Galdona R, Rivas R, León-Barrios M (2014) Evaluation of seven housekeeping genes for Multilocus sequences analysis of genus Mesorhizobium: resolving the taxonomic affiliation of the Cicer canariense rhizobia. Syst Appl Microbiol 37:553–559CrossRefPubMedGoogle Scholar
  25. Ramírez-Bahena MH, Hernández M, Peix A, Velázquez E, León-Barrios M (2012) Mesorhizobial strains nodulating Anagyris latifolia and Lotus berthelotii in Tamadaya ravine Tenerife, Canary Islands are two symbiovars of the same species, Mesorhizobium tamadayense sp. nov. Syst Appl Microbiol 35:334–341CrossRefPubMedGoogle Scholar
  26. Rigaud J, Puppo A (1975) Indole-3-acetic acid catabolism by soybean bacteroids. J Gen Microbiol 88:223–228CrossRefGoogle Scholar
  27. Rivas R, Velázquez E, Willems A, Vizcaíno N, Subba-Rao NS, Mateos PF, Gillis M, Dazzo FB, Martínez-Molina E (2002) A new species of Devosia that forms a unique nitrogen-fixing root-nodule symbiosis with the aquatic legume Neptunia natans (L.f.) Druce. Appl Environ Microbiol 68:5217–5222CrossRefPubMedPubMedCentralGoogle Scholar
  28. Rogel M, Ormeño-Orrillo E, Martinez-Romero E (2011) Symbiovars in rhizobia reflect bacterial adaptation to legumes. Syst Appl Microbiol 34:96–104CrossRefPubMedGoogle Scholar
  29. Saitou N, Nei M (1987) The neighbour-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425PubMedGoogle Scholar
  30. Santos-Guerra A, Lewis GP (1985) A new species of Cicer (Leguminosae-Papilionoideae) from the Canary Islands. Kew Bull 41:459–462CrossRefGoogle Scholar
  31. Stepkowski T, Hughes CE, Law IJ, Markiewicz L, Gurda D, Chlebicka A, Moulin LS (2007) Diversification of lupine Bradyrhizobium strains: evidence from nodulation gene trees. Appl Environ Microbiol 73:3254–3264CrossRefPubMedPubMedCentralGoogle Scholar
  32. Sullivan JT, Patrick HN, Lowthert WL, Scott DB, Ronson CW (1995) Nodulating strains of Rhizobium loti arise through chromosomal symbiotic gene transfer in the environment. Proc Natl Acad Sci U S A 92:8985–8989CrossRefPubMedPubMedCentralGoogle Scholar
  33. Sullivan JT, Trzebiatowski JR, Cruickshank RW, Gouzy J, Brown SD, Elliot RM, Fleetwood DJ, McCallum NG, Rossbach U, Stuart GS, Weaver JE, Webby RJ, de Bruijn FJ, Ronson CW (2002) Comparative sequence analysis of the symbiosis island of Mesorhizobium loti strain R7A. J Bacteriol 184:3086–3095CrossRefPubMedPubMedCentralGoogle Scholar
  34. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Mol Biol Evol 30:2725–2729CrossRefPubMedPubMedCentralGoogle Scholar
  35. Vinuesa P, León-Barrios M, Silva C, Willems A, Jarabo-Lorenzo A, Pérez-Galdona R, Werner D, Martínez-Romero E (2005) Bradyrhizobium canariense sp. nov., an acid-tolerant endosymbiont that nodulates endemic genistoid legumes (Papilionoideae: Genisteae) from the Canary Islands, along with Bradyrhizobium japonicum bv. genistearum, Bradyrhizobium genospecies alpha and Bradyrhizobium genospecies beta. Int J Syst Evol Microbiol 55:569–575CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Pilar Martínez-Hidalgo
    • 1
  • Juan Pérez-Yépez
    • 2
  • Encarna Velázquez
    • 1
  • Ricardo Pérez-Galdona
    • 2
  • Eustoquio Martínez-Molina
    • 1
  • Milagros León-Barrios
    • 1
  1. 1.Departamento de Microbiología y GenéticaUniversidad de SalamancaSalamancaSpain
  2. 2.Departamento de Bioquímica, Microbiología, Biología Celular y GenéticaUniversidad de La LagunaLa LagunaSpain

Personalised recommendations