Plant and Soil

, Volume 394, Issue 1–2, pp 329–342 | Cite as

Interspecific differences in determinants of plant distribution in industrially polluted areas: Endogenous spatial autocorrelation vs. environmental parameters

  • O. V. Dulya
  • V. S. MikryukovEmail author
  • I. A. Hlystov
Regular Article


Background and Aims

Interspecific differences have been clearly shown in the contribution of endogenous spatial autocorrelation (caused by dispersal) to the spatial structure of undisturbed vegetation. However, this phenomenon has not been studied in industrially polluted areas, where heavy metals’ excess is traditionally considered to be the main driver of ecosystem processes. We compare the contributions of endogenous autocorrelation and environmental parameters to the distribution of herbaceous plants in open and forested sites heavily polluted with copper smelter emissions.


Principal coordinates of neighbour matrices were used to create spatial predictors that were incorporated into beta regression models together with environmental predictors. Their importance for species’ spatial structure was assessed using multimodel inference and variation partitioning approach.


Equisetum sylvaticum, Leucanthemum vulgare, Tussilago farfara, Carex rostrata, Scirpus sylvaticus and Deschampsia cespitosa responded strongly to soil toxicity, while Agrostis capillaris and Lychnis flos-cuculi, to microtopography and tree disposition. Endogenous autocorrelation was strongly pronounced in L. flos-cuculi distribution across all study sites and was substantial for A. capillaris in open areas.


Despite the extreme level of soil toxicity, the importance of other environmental parameters and endogenous autocorrelation remarkably differed among species, resulting from interspecific differences in ecological preferences and dispersal mode.


Dispersal limitation Heavy metal Herbaceous plant PCNM Soil toxicity Spatial autocorrelation 



We appreciate E.L. Vorobeichik for discussion of the results, and anonymous referees for their helpful comments. We thank I.E. Bergman and T.Yu. Gabershtein for the help in data collection. This study was supported by Russian Foundation for Basic Research (14-04-31345; 12-04-32116), the Scientific School Support Program (NSh-2840.2014.4) and the Program of Basic Research of the Ural Branch of Russian Academy of Sciences (12-P-4-1026).

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

11104_2015_2538_MOESM1_ESM.pdf (1.4 mb)
ESM 1 (PDF 1477 kb)


  1. Aiba M, Takafumi H, Hiura T (2012) Interspecific differences in determinants of plant species distribution and the relationships with functional traits. J Ecol 100:950–957. doi: 10.1111/j.1365-2745.2012.01959.x CrossRefGoogle Scholar
  2. Alameda D, Villar R, Iriondo JM (2012) Spatial pattern of soil compaction: trees’ footprint on soil physical properties. For Ecol Manag 283:128–137. doi: 10.1016/j.foreco.2012.07.018 CrossRefGoogle Scholar
  3. Andersen R, Poulin M, Borcard D, Laiho R, Laine J, Vasander H, Tuittila ET (2011) Environmental control and spatial structures in peatland vegetation. J Veg Sci 22:878–890. doi: 10.1111/j.1654-1103.2011.01295.x CrossRefGoogle Scholar
  4. Antonovics J, Bradshaw AD, Turner RG (1971) Heavy metal tolerance in plants. In: Cragg JB (ed) Advances in Ecological Research. Academic Press 7:1–85. doi:  10.1016/S0065-2504(08)60202-0
  5. Baker AJM (1987) Metal tolerance. New Phytol 106:93–111. doi: 10.1111/j.1469-8137.1987.tb04685.x CrossRefGoogle Scholar
  6. Borcard D, Legendre P (2002) All-scale spatial analysis of ecological data by means of principal coordinates of neighbour matrices. Ecol Model 153:51–68. doi: 10.1016/S0304-3800(01)00501-4 CrossRefGoogle Scholar
  7. Borcard D, Legendre P, Drapeau P (1992) Partialling out the spatial component of ecological variation. Ecology 73:1045–1055. doi: 10.2307/1940179 CrossRefGoogle Scholar
  8. Bowman G, Perret C, Hoehn S, Galeuchet DJ, Fischer M (2008) Habitat fragmentation and adaptation: a reciprocal replant-transplant experiment among 15 populations of Lychnis flos-cuculi. J Ecol 96:1056–1064. doi: 10.1111/j.1365-2745.2008.01417.x CrossRefGoogle Scholar
  9. Bradshaw AD (1960) Population differentiation in Agrostis tenuis Sibth. III. Populations in varied environments. New Phytol 59:92–103. doi: 10.1111/j.1469-8137.1960.tb06206.x CrossRefGoogle Scholar
  10. Bramley H, Tyerman SD, Turner DW, Turner NC (2011) Root growth of lupins is more sensitive to waterlogging than wheat. Funct Plant Biol 38:910–918. doi: 10.1071/Fp11148 CrossRefGoogle Scholar
  11. Brown SL, Chaney RL, Angle JS, Baker AJM (1994) Phytoremediation potential of Thlaspi caerulescens and bladder campion for zinc-contaminated and cadmium-contaminated soil. J Environ Qual 23:1151–1157CrossRefGoogle Scholar
  12. Buckland ST, Burnham KP, Augustin NH (1997) Model selection: an integral part of inference. Biometrics 53:603–618. doi: 10.2307/2533961 CrossRefGoogle Scholar
  13. Burnham KP, Anderson DR (2002) Model selection and multimodel inference: a practical information-theoretic approach, 2nd edn. Springer, New YorkGoogle Scholar
  14. Burnham KP, Anderson DR, Huyvaert KP (2011) AIC model selection and multimodel inference in behavioral ecology: some background, observations, and comparisons. Behav Ecol Sociobiol 65:23–35. doi: 10.1007/s00265-010-1029-6 CrossRefGoogle Scholar
  15. Calcagno V, de Mazancourt C (2010) Glmulti: an R package for easy automated model selection with (generalized) linear models. J Stat Softw 34:1–29Google Scholar
  16. Chaloupecká E, Lepš J (2004) Equivalence of competitor effects and tradeoff between vegetative multiplication and generative reproduction: case study with Lychnis flos-cuculi and Myosotis nemorosa. Flora 199:157–167CrossRefGoogle Scholar
  17. Chiapella J, Probatova NS (2003) The Deschampsia cespitosa complex (Poaceae: Aveneae) with special reference to Russia. Bot J Linn Soc 142:213–228. doi: 10.1046/j.1095-8339.2003.00167.x CrossRefGoogle Scholar
  18. Cox RM, Hutchinson TC (1980) Multiple metal tolerances in the grass Deschampsia cespitosa (L.) Beauv. from the Sudbury smelting area. New Phytol 84:631–647. doi: 10.1111/j.1469-8137.1980.tb04777.x
  19. Cribari-Neto F, Zeileis A (2010) Beta regression in R. J Stat Softw 34:1–24Google Scholar
  20. Davy AJ (1980) Biological flora of the British Isles. Deschampsia caespitosa (L.) Beauv. J Ecol 62:367–378CrossRefGoogle Scholar
  21. Desjardins D, Nissim WG, Pitre FE, Naud A, Labrecque M (2014) Distribution patterns of spontaneous vegetation and pollution at a former decantation basin in southern Québec, Canada. Ecol Eng 64:385–390. doi: 10.1016/j.ecoleng.2014.01.003 CrossRefGoogle Scholar
  22. Dray S, Legendre P, Peres-Neto PR (2006) Spatial modelling: a comprehensive framework for principal coordinate analysis of neighbour matrices (PCNM). Ecol Model 196:483–493. doi: 10.1016/j.ecolmodel.2006.02.015 CrossRefGoogle Scholar
  23. Dray S et al (2012) Community ecology in the age of multivariate multiscale spatial analysis. Ecol Monogr 82:257–275. doi: 10.1890/11-1183.1 CrossRefGoogle Scholar
  24. Dulya OV, Mikryukov VS, Vorobeichik EL (2013) Strategies of adaptation to heavy metal pollution in Deschampsia caespitosa and Lychnis flos-cuculi: analysis based on dose–response relationship. Russ J Ecol 44:271–281. doi: 10.1134/S1067413613040036 CrossRefGoogle Scholar
  25. Ferrari SLP, Cribari-Neto F (2004) Beta regression for modelling rates and proportions. J Appl Stat 31:799–815. doi: 10.1080/0266476042000214501 CrossRefGoogle Scholar
  26. Flinn KM, Gouhier TC, Lechowicz MJ, Waterway MJ (2010) The role of dispersal in shaping plant community composition of wetlands within an old-growth forest. J Ecol 98:1292–1299. doi: 10.1111/j.1365-2745.2010.01708.x CrossRefGoogle Scholar
  27. Fortin M-J, Dale MRT (2005) Spatial analysis: a guide for ecologists. Cambridge University Press, CambridgeGoogle Scholar
  28. Foster BL, Gross KL (1998) Species richness in a successional grassland: effects of nitrogen enrichment and plant litter. Ecology 79:2593–2602. doi: 10.1890/0012-9658(1998)079[2593:Sriasg]2.0.Co;2 CrossRefGoogle Scholar
  29. Gallardo A, Parama R, Covelo F (2006) Differences between soil ammonium and nitrate spatial pattern in six plant communities. Simulated effect on plant populations. Plant Soil 279:333–346. doi: 10.1007/s11104-005-8552-7 CrossRefGoogle Scholar
  30. Gelman A (2008) Scaling regression inputs by dividing by two standard deviations. Stat Med 27:2865–2873. doi: 10.1002/Sim.3107 CrossRefPubMedGoogle Scholar
  31. Halpern CB, Haugo RD, Antos JA, Kaas SS, Kilanowski AL (2012) Grassland restoration with and without fire: evidence from a tree-removal experiment. Ecol Appl 22:425–441CrossRefPubMedGoogle Scholar
  32. Haugo RD, Halpern CB (2010) Tree age and tree species shape positive and negative interactions in a montane meadow. Botany 88:488–499. doi: 10.1139/B10-018 CrossRefGoogle Scholar
  33. Jones CG, Lawton JH, Shachak M (1994) Organisms as ecosystem engineers. Oikos 69:373–386. doi: 10.2307/3545850 CrossRefGoogle Scholar
  34. Kaigorodova SY, Vorobeichik EL (1996) Changes in certain properties of grey forest soil polluted with emissions from a copper-smelting plant. Russ J Ecol 27:177–183Google Scholar
  35. Kleyer M et al (2008) The LEDA Traitbase: a database of life-history traits of the Northwest European flora. J Ecol 96:1266–1274. doi: 10.1111/j.1365-2745.2008.01430.x CrossRefGoogle Scholar
  36. Kuhn I, Durka W, Klotz S (2004) BiolFlor—a new plant-trait database as a tool for plant invasion ecology. Divres Distrib 10:363–365. doi: 10.1111/j.1366-9516.2004.00106.x CrossRefGoogle Scholar
  37. Lazarus BE, Richards JH, Claassen VP, O’Dell RE, Ferrell MA (2011) Species specific plant-soil interactions influence plant distribution on serpentine soils. Plant Soil 342:327–344. doi: 10.1007/s11104-010-0698-2 CrossRefGoogle Scholar
  38. Legendre P, Borcard D, Roberts DW (2012) Variation partitioning involving orthogonal spatial eigenfunction submodels. Ecology 93:1234–1240. doi: 10.1890/11-2028.1 CrossRefPubMedGoogle Scholar
  39. Levine JM, Murrell DJ (2003) The community-level consequences of seed dispersal patterns. Annu Rev Ecol Evol Syst 34:549–574. doi: 10.1146/annurev.ecolsys.34.011802.132400 CrossRefGoogle Scholar
  40. Marmottant P, Ponomarenko A, Bienaime D (2013) The walk and jump of Equisetum spores. Proc R Soc B Biol Sci 280:20131465. doi: 10.1098/Rspb.2013.1465 CrossRefGoogle Scholar
  41. Moeslund JE, Arge L, Bøcher PK, Dalgaard T, Ejrnæs R, Odgaard MV, Svenning JC (2013) Topographically controlled soil moisture drives plant diversity patterns within grasslands. Biodivers Conserv 22:2151–2166. doi: 10.1007/s10531-013-0442-3 CrossRefGoogle Scholar
  42. Moore KA, Elmendorf SC (2006) Propagule vs. niche limitation: untangling the mechanisms behind plant species’ distributions. Ecol Lett 9:797–804. doi: 10.1111/j.1461-0248.2006.00923.x CrossRefPubMedGoogle Scholar
  43. Murray K, Conner MM (2009) Methods to quantify variable importance: implications for the analysis of noisy ecological data. Ecology 90:348–355. doi: 10.1890/07-1929.1 CrossRefPubMedGoogle Scholar
  44. Nesterkov AV, Vorobeichik EL (2009) Changes in the structure of chortobiont invertebrate community exposed to emissions from a copper smelter. Russ J Ecol 40:286–296. doi: 10.1134/S1067413609040109 CrossRefGoogle Scholar
  45. Oksanen J et al (2015) Vegan: community ecology package. Accessed 8 March 2015
  46. Rapson GL, Wilson JB (1988) Non-adaptation in Agrostis capillaris L. (Poaceae). Funct Ecol 2:479–490. doi: 10.2307/2389391 CrossRefGoogle Scholar
  47. R Core Team (2014) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. Accessed 8 March 2015
  48. Reichman S (2002) The responses of plants to metal toxicity: a review focusing on copper, manganese & zinc. Australian Minerals & Energy Environment Foundation, MelbourneGoogle Scholar
  49. Revelle W (2015) Psych: procedures for personality and psychological research. Northwestern University. Accessed 8 March 2015
  50. Simas AB, Barreto-Souza W, Rocha AV (2010) Improved estimators for a general class of beta regression models. Comput Stat Data Anal 54:348–366. doi: 10.1016/j.csda.2009.08.017 CrossRefGoogle Scholar
  51. Sotek Z (2010) Distribution patterns, history, and dynamics of peatland vascular plants in Pomerania (NW Poland). Biodiv Resour Conserv 18:1–82. doi: 10.2478/v10119-010-0020-4 Google Scholar
  52. Stuefer J, De Kroon H, During H (1996) Exploitation of environmental hetergeneity by spatial division of labor in a clonal plant. Funct Ecol 10:328–334CrossRefGoogle Scholar
  53. Von Frenckell-Insam BAK, Hutchinson TC (1993a) Nickel and zinc tolerance and co-tolerance in populations of Deschampsia cespitosa (L.) Beauv. subject to artificial selection. New Phytol 125:547–553. doi: 10.1111/j.1469-8137.1993.tb03902.x CrossRefGoogle Scholar
  54. Von Frenckell-Insam BAK, Hutchinson TC (1993b) Occurrence of heavy metal tolerance and co-tolerance in Deschampsia cespitosa (L.) Beauv. from European and Canadian populations. New Phytol 125:555–564. doi: 10.1111/j.1469-8137.1993.tb03903.x CrossRefGoogle Scholar
  55. Vorobeichik EL, Pishchulin PG (2009) Effect of individual trees on the pH and the content of heavy metals in forest litters upon industrial contamination. Eur Soil Sci 42:861–873. doi: 10.1134/S1064229309080043 CrossRefGoogle Scholar
  56. Vorobeichik EL, Pozolotina VN (2003) Microscale spatial variation in forest litter phytotoxicity. Russ J Ecol 34:381–388. doi: 10.1023/A:1027308400182 CrossRefGoogle Scholar
  57. Vorobeichik EL, Trubina MR, Khantemirova EV, Bergman IE (2014) Longterm dynamic of forest vegetation after the reduction of copper smelter emission. Russ J Ecol 45:498–507. doi: 10.1134/S1067413614060150 CrossRefGoogle Scholar
  58. Wilkinson L (2012) Exact and approximate area-proportional circular Venn and Euler diagrams. IEEE Trans Vis Comput Graph 18:321–331. doi: 10.1109/TVCG.2011.56 CrossRefPubMedGoogle Scholar
  59. Wilson JB (1988) The cost of heavy-metal tolerance—an example. Evolution 42:408–413. doi: 10.2307/2409246 CrossRefGoogle Scholar
  60. Xiong SJ, Nilsson C (1999) The effects of plant litter on vegetation: a meta-analysis. J Ecol 87:984–994. doi: 10.1046/j.1365-2745.1999.00414.x CrossRefGoogle Scholar
  61. Zvereva EL, Kozlov MV (2004) Facilitative effects of top-canopy plants on four dwarf shrub species in habitats severely disturbed by pollution. J Ecol 92:288–296. doi: 10.1111/j.0022-0477.2004.00854.x CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Institute of Plant and Animal Ecology, Ural BranchRussian Academy of SciencesEkaterinburgRussia

Personalised recommendations