Advertisement

Plant and Soil

, Volume 405, Issue 1–2, pp 125–140 | Cite as

Endophytes-assisted biocontrol: novel insights in ecology and the mode of action of Paenibacillus

  • Daria Rybakova
  • Tomislav Cernava
  • Martina Köberl
  • Stefan Liebminger
  • Mohammad Etemadi
  • Gabriele BergEmail author
Regular Article

Abstract

Background

Biological control is an environmentally sound and effective means of reducing pathogen-induced damage to agriculture using natural antagonists. Paenibacillus is a cosmopolitan and ubiquitously occurring bacterial genus with antagonistic activity against phytopathogens. Many species and strains with promising potential for plant growth promotion and biocontrol of pathogens have been identified since Paenibacillus was first described 20 years ago. Nevertheless, important questions regarding the colonization of plants, and the mode of action of Paenibacillus remain unanswered.

Scope

This review focuses on the occurrence of Paenibacillus in microbial metagenomes, the endophytic lifestyle of Paenibacillus, and the function of Paenibacillus-derived volatile organic compounds (VOCs) combining actual literature with our own results.

Conclusions

This review provides new insights into the endophytic lifestyle of Paenibacillus and discusses strain-specific and system-dependent growth promotion effects on plants. VOCs, in particular pyrazine derivatives emitted by Paenibacillus, showed high activity against other organisms. This suggests that VOCs play an important role in communication and interaction. Overall, Paenibacillus strains demonstrate promising potential not only for sustainable agriculture and biological control, but also as a source for novel bioactive volatiles.

Keywords

PGPR Plant growth promotion Endophyte Volatiles Metagenomics 

Notes

Acknowledgments

The authors would like to thank Timothy Mark (Graz) for English revision and discussion. This work was supported by three grants to GB, one from the Austrian Science Fund (FWF-DACH Project I882), another one affiliated to ACIB, the Austrian Centre of Industrial Biotechnology (supported by the Federal Ministry of Economy, Family and Youth (BMWFJ), the Federal Ministry of Traffic, Innovation and Technology (bmvit), the Styrian Business Promotion Agency SFG, the Standortagentur Tirol and ZIT—Technology Agency of the City of Vienna through the COMET-Funding Program managed by the Austrian Research Promotion Agency FFG) and the 3rd is an EU-funded project (BIOCOMES, No. 612713).

Supplementary material

11104_2015_2526_MOESM1_ESM.docx (353 kb)
ESM 1 (DOCX 352 kb)

References

  1. Aguilar C, Vlamakis H, Losick R, Kolter R (2007) Thinking about Bacillus subtilis as a multicellular organism. Curr Opin Microbiol 10:638–643PubMedPubMedCentralCrossRefGoogle Scholar
  2. Alvarez VM, von der Weid I, Seldin L, Santos AL (2006) Influence of growth conditions on the production of extracellular proteolytic enzymes in Paenibacillus peoriae NRRL BD-62 and Paenibacillus polymyxa SCE2. Lett Appl Microbiol 43:625–630PubMedCrossRefGoogle Scholar
  3. Anand R, Paul L, Chanway C (2006) Research on endophytic bacteria: recent advances with forest trees. In: Schulz B, Boyle C, Sieber TN (eds) Microbial root endophytes. Springer, Berlin Heidelberg, pp 89–106CrossRefGoogle Scholar
  4. Antonopoulos DF, Tjamos SE, Antoniou PP, Rafeletos P, Tjamos EC (2008) Effect of Paenibacillus alvei, strain K165, on the germination of Verticillium dahliae microsclerotia in planta. Biol Control 46:166–170CrossRefGoogle Scholar
  5. Ash C, Priest FG, Collins MD (1993) Molecular identification of rRNA group 3 bacilli (Ash, Farrow, Wllbanks and Collins) using a PCR probe test. Antonie Van Leeuwenhoek 64:253–260PubMedCrossRefGoogle Scholar
  6. Aswathy AJ, Jasim B, Jyothis M, Radhakrishnan EK (2013) Identification of two strains of Paenibacillus sp. as indole 3 acetic acid-producing rhizome-associated endophytic bacteria from Curcuma longa. 3. Biotech 3:219–224Google Scholar
  7. Bacon CW, Hinton DM (1997) Isolation and culture of endophytic bacteria and fungi. In: Knudsen GR, McInerney MJ, Stetzenbach LD, Walter MV (eds) Manual of environmental microbiology. ASM Press, Washington, pp 413–421Google Scholar
  8. Beatty PH, Jensen SE (2002) Paenibacillus polymyxa produces fusaricidin-type antifungal antibiotics active against Leptosphaeria maculans, the causative agent of blackleg disease of canola. Can J Microbiol 48:159–169PubMedCrossRefGoogle Scholar
  9. Beauregard PB, Chai Y, Vlamakis H, Losick R, Kolter R (2013) Bacillus subtilis biofilm induction by plant polysaccharides. Proc Natl Acad Sci U S A 23:E1621–E1630CrossRefGoogle Scholar
  10. Beck HC, Hansen AM, Lauritsen FR (2003) Novel pyrazine metabolites found in polymyxin biosynthesis by Paenibacillus polymyxa. FEMS Microbiol Lett 220:67–73PubMedCrossRefGoogle Scholar
  11. Ben-Jacob E, Becker I, Shapira Y, Levine H (2004) Bacterial linguistic communication and social intelligence. Trends Microbiol 12:366–372PubMedCrossRefGoogle Scholar
  12. Bent E, Chanway CP (1998) The growth-promoting effects of a bacterial endophyte on lodgepole pine are partially inhibited by the presence of other rhizobacteria. Can J Microbiol 44:980–988CrossRefGoogle Scholar
  13. Bent E, Chanway CP (2002) Potential for misidentification of a spore-forming Paenibacillus polymyxa isolate as an endophyte by using culture-based methods. Appl Environ Microbiol 68:4650–4652PubMedPubMedCentralCrossRefGoogle Scholar
  14. Berg G (2009) Plant–microbe interactions promoting plant growth and health: perspectives for controlled use of microorganisms in agriculture. Appl Microbiol Biotechnol 84:11–18PubMedCrossRefGoogle Scholar
  15. Berg G, Krechel A, Ditz M, Sikora RA, Ulrich A, Hallmann J (2005) Endophytic and ectophytic potato-associated bacterial communities differ in structure and antagonistic function against plant pathogenic fungi. FEMS Microbiol Ecol 51:215–229PubMedCrossRefGoogle Scholar
  16. Berg G, Zachow C, Müller H, Philipps J, Tilcher R (2013) Next-generation bio-products sowing the seeds of success for sustainable agriculture. Agronomy 3:648–656CrossRefGoogle Scholar
  17. Berg G, Grube M, Schloter M, Smalla K (2014) The plant microbiome and its importance for plant and human health. Front Microbiol 5:491PubMedPubMedCentralGoogle Scholar
  18. Bionda N, Pitteloud JP, Cudic P (2013) Cyclic lipodepsipeptides: a new class of antibacterial agents in the battle against resistant bacteria. Future Med Chem 5:1311–1330PubMedCrossRefGoogle Scholar
  19. Calvo P, Nelson L, Kloepper JW (2014) Agricultural uses of plant biostimulants. Plant Soil 383:3–41CrossRefGoogle Scholar
  20. Cernava T (2012) Identification of volatile organic compounds from plant-associated bacteria. Graz University of Technology, Master thesisGoogle Scholar
  21. Compant S, Clément C, Sessitsch A (2010) Plant growth-promoting bacteria in the rhizo-and endosphere of plants: their role, colonization, mechanisms involved and prospects for utilization. Soil Biol Biochem 42:669–678CrossRefGoogle Scholar
  22. Cotta SR, da Mota FF, Tupinambá G, Ishida K, Rozental S, Silva DO E, da Silva AJ, Bizzo HR, Alviano DS, Alviano CS, Seldin L (2012) Antimicrobial activity of Paenibacillus kribbensis POC 115 against the dermatophyte Trichophyton rubrum. World J Microbiol Biotechnol 28:953–962PubMedCrossRefGoogle Scholar
  23. Da Mota FF, Gomes EA, Seldin L (2008) Auxin production and detection of the gene coding for the Auxin Efflux Carrier (AEC) protein in Paenibacillus polymyxa. J Microbiol 46:257–264PubMedCrossRefGoogle Scholar
  24. Davies PJ (2010) Plant hormones: biosynthesis, signal transduction, action! 3rd edn. Springer, DordrechtCrossRefGoogle Scholar
  25. Delmotte N, Knief C, Chaffron S, Innerebner G, Roschitzki B, Schlapbach R, von Mering C, Vorholt JA (2009) Community proteogenomics reveals insights into the physiology of phyllosphere bacteria. PNAS 106:16428–16433PubMedPubMedCentralCrossRefGoogle Scholar
  26. Deng Y, Lu Z, Lu F, Wang Y, Bie X (2011a) Study on an antimicrobial protein produced by Paenibacillus polymyxa JSa-9 isolated from soil. World J Microbiol Biotechnol 27:1803–1807CrossRefGoogle Scholar
  27. Deng Y, Lu Z, Lu F, Zhang C, Wang Y, Zhao H, Bie X (2011b) Identification of LI-F type antibiotics and di-n-butyl phthalate produced by Paenibacillus polymyxa. J Microbiol Methods 85:175–182PubMedCrossRefGoogle Scholar
  28. Deng Y, Lu Z, Bi H, Lu F, Zhang C, Bie X (2011c) Isolation and characterization of peptide antibiotics LI-F04 and polymyxin B6 produced by Paenibacillus polymyxa strain JSa-9. Peptides 32:1917–1923PubMedCrossRefGoogle Scholar
  29. Ding Y, Wang J, Liu Y, Chen S (2005) Isolation and identification of nitrogen‐fixing bacilli from plant rhizospheres in Beijing region. J Appl Microbiol 99:1271–1281PubMedCrossRefGoogle Scholar
  30. Dobbelaere S, Croonenborghs A, Thys A, Broek AV, Vanderleyden J (1999) Phytostimulatory effect of Azospirillum brasilense wild type and mutant strains altered in IAA production on wheat. Plant Soil 212:153–162CrossRefGoogle Scholar
  31. Dobbelaere S, Vanderleyden J, Okon Y (2003) Plant growth-promoting effects of diazotrophs in the rhizosphere. CRC Crit Rev Plant Sci 22:107–149CrossRefGoogle Scholar
  32. El-Deeb B, Fayez K, Gherbawy Y (2013) Isolation and characterization of endophytic bacteria from Plectranthus tenuiflorus medicinal plant in Saudi Arabia desert and their antimicrobial activities. J Plant Interact 8(1):56–64CrossRefGoogle Scholar
  33. Emmert EAB, Handelsman J (1999) Biocontrol of plant disease: a (Gram-) positive perspective. FEMS Microbiol Lett 171:1–9PubMedCrossRefGoogle Scholar
  34. Erlacher A, Cardinale M, Grosch R, Grube M, Berg G (2014) The impact of the pathogen Rhizoctonia solani and its beneficial counterpart Bacillus amyloliquefaciens on the indigenous lettuce microbiome. Front Microbiol 5:175PubMedPubMedCentralCrossRefGoogle Scholar
  35. Fürnkranz M, Lukesch B, Müller H, Huss H, Grube M, Berg G (2012a) Microbial diversity inside pumpkins: microhabitat-specific communities display a high antagonistic potential against phytopathogens. Microb Ecol 63:418–428PubMedCrossRefGoogle Scholar
  36. Fürnkranz M, Adam E, Müller H, Grube M, Huss H, Winkler J, Berg G (2012b) Promotion of growth, health and stress tolerance of Styrian oil pumpkins by bacterial endophytes. Eur J Plant Pathol 134:509–519CrossRefGoogle Scholar
  37. Genersch E (2010) American Foulbrood in honeybees and its causative agent, Paenibacillus larvae. J Invertebr Pathol 103:10–19CrossRefGoogle Scholar
  38. Giamarellou H, Poulakou G (2009) Multidrug-resistant Gram-negative infections: what are the treatment options? Drugs 69:1879–1901PubMedCrossRefGoogle Scholar
  39. Govindasamy V, Senthilkumar M, Magheshwaran V, Kumar U, Bose P, Sharma V, Annapurna K (2011) Bacillus and Paenibacillus spp.: potential PGPR for sustainable agriculture. In: Maheshwari D (ed) Plant growth and health promoting bacteria; microbiology monographs 18. Springer, Berlin Heidelberg, pp 333–364Google Scholar
  40. Grube M, Cernava T, Soh J, Fuchs S, Aschenbrenner I, Lassek C, Wegner U, Becher D, Riedel K, Sensen CW, Berg G (2015) Exploring functional contexts of symbiotic sustain within lichen-associated bacteria by comparative omics. ISME J 9:412–424PubMedCrossRefGoogle Scholar
  41. Hallmann J, Quadt-Hallmann A, Mahaffee WF, Kloepper JW (1997) Bacterial endophytes in agricultural crops. Can J Microbiol 43:895–914CrossRefGoogle Scholar
  42. Hardoim PR, van Overbeek LS, Berg G, Pirttilä AM, Compante S, Campisano A, Döring M, Sessitsch A (2015) The hidden world within plants: ecological and evolutionary considerations for defining functioning of microbial endophytes. Microbiology and Molecular Biology Reviews, under revisionGoogle Scholar
  43. Hartmann A, Rothballer M, Schmid M (2008) Lorenz Hiltner, a pioneer in rhizosphere microbial ecology and soil bacteriology research. Plant Soil 312:7–14CrossRefGoogle Scholar
  44. Hayat R, Ali S, Amara U, Khalid R, Ahmed I (2010) Soil beneficial bacteria and their role in plant growth promotion: a review. Ann Microbiol 60:579–598CrossRefGoogle Scholar
  45. Heil M, Bostock RM (2002) Induced systemic resistance (ISR) against pathogens in the context of induced plant defences. Ann Bot 89:503–512PubMedPubMedCentralCrossRefGoogle Scholar
  46. Holl FB, Chanway CP (1992) Rhizosphere colonization and seedling growth promotion of lodgepole pine by Bacillus polymyxa. Can J Microbiol 38:303–308CrossRefGoogle Scholar
  47. Ito M, Koyama Y (1972) Jolipeptin, a new peptide antibiotic. II. The mode of action of jolipeptin. J Antibiot 25:309–314PubMedCrossRefGoogle Scholar
  48. Jin HJ, Tu R, Xu F, Chen SF (2011) Identification of nitrogen-fixing Paenibacillus from different plant rhizospheres and a novel nifH gene detected in the P. stellifer. Microbiology 80:117–124CrossRefGoogle Scholar
  49. Kajimura Y, Kaneda M (1996) Fusaricidin A, a new depsipeptide antibiotic produced by Bacillus polymyxa KT-8. Taxonomy, fermentation, isolation, structure elucidation and biological activity. J Antibiot 49:129–135PubMedCrossRefGoogle Scholar
  50. Kajimura Y, Kaneda M (1997) Fusaricidins B, C and D, new depsipeptide antibiotics produced by Bacillus polymyxa KT-8: isolation, structure elucidation and biological activity. J Antibiot 50:220–228CrossRefGoogle Scholar
  51. Keita MB, Padhmananabhan R, Caputo A, Robert C, Delaporte E, Raoult D, Bittar F (2014) Non-contiguous finished genome sequence and description of Paenibacillus gorillae sp. nov. Stand Genomic Sci 9:1031–1045PubMedPubMedCentralCrossRefGoogle Scholar
  52. Kim SB, Timmusk S (2013) A simplified method for Paenibacillus polymyxa gene knockout and insertional screening. PLoS ONE. doi: 10.1371/journal.pone.0068092 Google Scholar
  53. Kimura Y, Murai E, Fujisawa M, Tatsuki T, Nobue F (1969) Polymyxin P, new antibiotics of polymyxin group. J Antibiot 22:449–450PubMedCrossRefGoogle Scholar
  54. Knief C, Delmotte N, Chaffron S, Stark M, Innerebner G, Wassmann R, von Mering C, Vorholt JA (2011) Metaproteogenomic analysis of microbial communities in the phyllosphere and rhizosphere of rice. ISME J 6:1378–1390PubMedPubMedCentralCrossRefGoogle Scholar
  55. Köberl M, Müller H, Ramadan EM, Berg G (2011) Desert farming benefits from microbial potential in arid soils and promotes diversity and plant health. PLoS One 6, e24452PubMedPubMedCentralCrossRefGoogle Scholar
  56. Köberl M, Ramadan EM, Adam M, Cardinale M, Hallmann J, Heuer H, Smalla K, Berg G (2013) Bacillus and Streptomyces were selected as broad-spectrum antagonists against soilborne pathogens from arid areas in Egypt. FEMS Microbiol Lett 342:168–178PubMedCrossRefGoogle Scholar
  57. Krechel A, Faupel A, Hallmann J, Ulrich A, Berg G (2004) Potato-associated bacteria and their antagonistic potential towards plant-pathogenic fungi and the plant-parasitic nematode Meloidogyne incognita (Kofoid & White) Chitwood. Can J Microbiol 48:772–786CrossRefGoogle Scholar
  58. Kurusu K, Ohba K, Arai T, Fukushima K (1987) New peptide antibiotics LI-F03, F04, F05, F07, and F08, produced by Bacillus polymyxa. I. Isolation and characterization. J Antibiot 40:1506–1514PubMedCrossRefGoogle Scholar
  59. Lal S, Tabacchioni S (2009) Ecology and biotechnological potential of Paenibacillus polymyxa: a minireview. Indian J Microbiol 49:2–10PubMedPubMedCentralCrossRefGoogle Scholar
  60. Landman D, Georgescu C, Martin DA, Quale J (2008) Polymyxins revisited. Clin Microbiol Rev 21:449–465PubMedPubMedCentralCrossRefGoogle Scholar
  61. Lebuhn M, Heulin T, Hartmann A (1997) Production of auxin and other indolic and phenolic compounds by Paenibacillus polymyxa strains isolated from different proximity to plant roots. FEMS Microbiol Ecol 22:325–334CrossRefGoogle Scholar
  62. Lee B, Farag MA, Park HB, Kloepper JW, Lee SH, Ryu CM (2012) Induced resistance by a long-chain bacterial volatile: elicitation of plant systemic defense by a C13 volatile produced by Paenibacillus polymyxa. PLoS One 7, e48744PubMedPubMedCentralCrossRefGoogle Scholar
  63. Lehninger AL (1975) Biochemistry: the molecular basis of cell structure and function. Worth, New YorkGoogle Scholar
  64. Liu WW, Mu W, Zhu BY, Du YC, Liu F (2008) Antagonistic activities of volatiles from four strains of Bacillus spp. and Paenibacillus spp. against soil-borne plant pathogens. Agric Sci China 7:1104–1114CrossRefGoogle Scholar
  65. Logares R, Sunagawa S, Salazar G, Cornejo‐Castillo FM, Ferrera I, Sarmento H, Hingamp P, Ogata H, de Vargas C, Lima-Mendez G, Raes J, Poulain J, Jaillon O, Wincker P, Kandels-Lewis S, Karsteni E, Acinas SG (2014) Metagenomic 16S rDNA Illumina tags are a powerful alternative to amplicon sequencing to explore diversity and structure of microbial communities. Environ Microbiol 16:2659–2671PubMedCrossRefGoogle Scholar
  66. López D, Vlamakis H, Losick R, Kolter R (2009) Cannibalism enhances biofilm development in Bacillus subtilis. Mol Microbiol 74:609–618PubMedPubMedCentralCrossRefGoogle Scholar
  67. Ludwig-Müller J (2014) Auxin homeostasis, signaling and interaction with other growth hormones during the clubroot disease of Brassicaceae. Plant Signal Behav 9, e28593PubMedCentralCrossRefGoogle Scholar
  68. McSpadden Gardener BB (2004) Ecology of Bacillus and Paenibacillus spp. in agricultural systems. Phytopathology 94:1252–1258PubMedCrossRefGoogle Scholar
  69. Moissl-Eichinger C, Auerbach AK, Probst AJ, Mahnert A, Tom L, Piceno Y, Andersen GL, Venkateswaran K, Rettberg P, Barczyk S, Pukall R, Berg G (2015) Quo vadis? Microbial profiling revealed strong effects of cleanroom maintenance and routes of contamination in indoor environments. Sci Rep 5:9156PubMedPubMedCentralCrossRefGoogle Scholar
  70. Mukherjee M, Mukherjee PK, Horwitz BA, Zachow C, Berg G, Zeilinger S (2012) Trichoderma-plant-pathogen interactions: advances in genetics of biological control. Indian J Microbiol 52:522–529PubMedPubMedCentralCrossRefGoogle Scholar
  71. Müller H, Berg C, Landa BB, Auerbach A, Moissl-Eichinger C, Berg G (2015) Plant genotype-specific archaeal and bacterial endophytes but similar Bacillus antagonists colonize Mediterranean olive trees. Front Microbiol 6:138PubMedPubMedCentralCrossRefGoogle Scholar
  72. Nakajima N, Chihara S, Koyama Y (1972) A new antibiotic, gatavalin. I. Isolation and characterization. J Antibiot 25:243–247PubMedCrossRefGoogle Scholar
  73. Niu B, Vater J, Rueckert C, Blom J, Lehmann M, Ru JJ, Chen XH, Wang Q, Borriss R (2013) Polymyxin P is the active principle in suppressing phytopathogenic Erwinia spp. by the biocontrol rhizobacterium Paenibacillus polymyxa M-1. BMC Microbiol 13:137PubMedPubMedCentralCrossRefGoogle Scholar
  74. Ongena M, Jacques P (2008) Bacillus lipopeptides: versatile weapons for plant disease biocontrol. Trends Microbiol 16:115–125PubMedCrossRefGoogle Scholar
  75. Pettersson B, Rippere KE, Yousten AA, Priest FG (1999) Transfer of Bacillus lentimorbus and Bacillus popilliae to the genus Paenibacillus with emended descriptions of Paenibacillus lentimorbus comb. nov. and Paenibacillus popilliae comb. nov. Int J Syst Bacteriol 49:531–540PubMedCrossRefGoogle Scholar
  76. Philippot L, Raaijmakers JM, Lemanceau P, van der Putten WH (2013) Going back to the roots: the microbial ecology of the rhizosphere. Nat Rev Microbiol 11:789–799PubMedCrossRefGoogle Scholar
  77. Pichard B, Larue JP, Thouvenot D (1995) Gavaserin and saltavalin, new peptide antibiotics produced by Bacillus polymyxa. FEMS Microbiol Lett 133:215–218PubMedCrossRefGoogle Scholar
  78. Raza W, Yang W, Shen QR (2008) Paenibacillus polymyxa: antibiotics, hydrolytic enzymes and hazard assessment. J Plant Pathol 90:419–430Google Scholar
  79. Roh SW, Abell GC, Kim KH, Nam YD, Bae JW (2010) Comparing microarrays and next-generation sequencing technologies for microbial ecology research. Trends Biotechnol 28:291–299PubMedCrossRefGoogle Scholar
  80. Rybakova D, Schmuck M, Berg G (2015) Kill or cure? The interaction between endophytic Paenibacillus and Serratia spp. and the host plant is shaped by the environment; submittedGoogle Scholar
  81. Sakiyama CC, Paula EM, Pereira PC, Borges AC, Silva DO (2001) Characterization of pectin lyase produced by an endophytic strain isolated from coffee cherries. Lett Appl Microbiol 33:117–121PubMedCrossRefGoogle Scholar
  82. Scherling C, Ulrich K, Ewald D, Weckwerth W (2009) A metabolic signature of the beneficial interaction of the endophyte Paenibacillus sp. isolate and in vitro-grown poplar plants revealed by metabolomics. Mol Plant Microbe Interact 22:1032–1037PubMedCrossRefGoogle Scholar
  83. Schmid F, Moser G, Müller H, Berg G (2011) Functional and structural microbial diversity in organic and conventional viticulture: organic farming benefits natural biocontrol agents. Appl Environ Microbiol 77:2188–2191PubMedPubMedCentralCrossRefGoogle Scholar
  84. Schoina C, Stringlis IA, Pantelides IS, Tjamos SE, Paplomatas EJ (2011) Evaluation of application methods and biocontrol efficacy of Paenibacillus alvei strain K-165, against the cotton black root rot pathogen Thielaviopsis basicola. Biol Control 58:68–73CrossRefGoogle Scholar
  85. Shishido M, Loeb BM, Chanway CP (1995) External and internal root colonization of lodgepole pine seedlings by two growth-promoting Bacillus strains originated from different root microsites. Can J Microbiol 41:707–713CrossRefGoogle Scholar
  86. Shishido M, Massicotte HB, Chanway CP (1996) Effect of plant growth promoting Bacillus strains on pine and spruce seedling growth and mycorrhizal infection. Ann Bot 77:433–442CrossRefGoogle Scholar
  87. Shoji J, Hinoo H, Wakisaka Y, Koizumi K, Mayama M, Matsuura S (1977a) Isolation of two new polymyxin group antibiotics. (Studies on antibiotics from the genus Bacillus. X). J Antibiot 30:1029–1034PubMedCrossRefGoogle Scholar
  88. Shoji J, Kato T, Hinoo H (1977b) The structure of polymyxin S. (Studies on antibiotics from the genus Bacillus. XXI). J Antibiot (Tokyo) 30:1035–1041CrossRefGoogle Scholar
  89. Shoji J, Kato T, Hinoo H (1977c) The structure of polymyxin T1. (Studies on antibiotics from the genus Bacillus. XXII). J Antibiot 30:1042–1048PubMedCrossRefGoogle Scholar
  90. Smith EF (1911) Bacteria in relation to plant diseases. Carnegie Institute, Washington, USAGoogle Scholar
  91. Spaepen S, Vanderleyden J, Remans R (2007) Indole-3-acetic acid in microbial and microorganism–plant signaling. FEMS Microbiol Rev 31:425–448PubMedCrossRefGoogle Scholar
  92. Stansly PG, Schlosser ME (1947) Studies on polymyxin: isolation and identification of Bacillus polymyxa and differentiation of polymyxin from certain known antibiotics. J Bacteriol 54:549PubMedPubMedCentralGoogle Scholar
  93. Timmusk S (2015) Sfp-type PPTase inactivation promotes bacterial biofilm formation and ability to enhance wheat drought tolerance. Front Microbiol 6:387PubMedPubMedCentralCrossRefGoogle Scholar
  94. Timmusk S, Nevo E (2011) Plant root associated biofilms. In: Maheshwari DK (ed) Bacteria in 3 agrobiology. Plant nutrient management. Springer Verlag, Berlin 3:285–300Google Scholar
  95. Timmusk S, Wagner EGH (1999) The plant-growth-promoting rhizobacterium Paenibacillus polymyxa induces changes in Arabidopsis thaliana gene expression: a possible connection between biotic and abiotic stress responses. Mol Plant-Microbe Interact 12:951–959PubMedCrossRefGoogle Scholar
  96. Timmusk S, Nicander B, Granhall U, Tillberg E (1999) Cytokinin production by Paenibacillus polymyxa. Soil Biol Biochem 31:1847–1852CrossRefGoogle Scholar
  97. Timmusk S, Grantcharova N, Wagner EGH (2005) Paenibacillus polymyxa invades plant roots and forms biofilms. Appl Environ Microbiol 71:7292–7300PubMedPubMedCentralCrossRefGoogle Scholar
  98. Timmusk S, Paalme V, Lagercrantz U, Nevo E (2009) Detection and quantification of Paenibacillus polymyxa in the rhizosphere of wild barley (Hordeum spontaneum) with real-time PCR. J Appl Microbiol 107:736–745PubMedCrossRefGoogle Scholar
  99. Timmusk S, Paalme V, Pavlicek T, Bergquist J, Vangala A, Danilas T, Nevo E (2011) Bacterial distribution in the rhizosphere of wild barley under contrasting microclimates. PLoS One 6, e17968PubMedPubMedCentralCrossRefGoogle Scholar
  100. Timmusk S, Abd El-Daim IA, Copolovici L, Tanilas T, Kännaste A, Behers L, Nevo E, Seisenbaeva G, Stenström E, Niinemets Ü (2014) Drought-tolerance of wheat improved by rhizosphere bacteria from harsh environments: enhanced biomass production and reduced emissions of stress volatiles. PLoS One 9, e96086PubMedPubMedCentralCrossRefGoogle Scholar
  101. Tindall BJ (2000) What is the type species of the genus Paenibacillus? Request for an opinion. Int J Syst Evol Microbiol 50:939–940PubMedCrossRefGoogle Scholar
  102. Tjamos SE, Flemetakis E, Paplomatas EJ, Katinakis P (2005) Induction of resistance to Verticillium dahliae in Arabidopsis thaliana by the biocontrol agent K-165 and pathogenesis-related proteins gene expression. Mol Plant Microbe Interact 18:555–561PubMedCrossRefGoogle Scholar
  103. Trüper HG (2005) The type species of the genus Paenibacillus Ash et al. 1994 is Paenibacillus polymyxa. Opinion 77. Int J Syst Evol Microbiol 55:17CrossRefGoogle Scholar
  104. Tupinambá G, Da Silva AJR, Alviano CS, Souto‐Padron TCBS, Seldin L, Alviano DS (2008) Antimicrobial activity of Paenibacillus polymyxa SCE2 against some mycotoxin‐producing fungi. J Appl Microbiol 105:1044–1053PubMedCrossRefGoogle Scholar
  105. Ulrich K, Stauber, Ewald D (2008a) Paenibacillus—a predominant endophytic bacterium colonising tissue cultures of woody plants. Plant Cell Tissue Organ Cult 93:347–351CrossRefGoogle Scholar
  106. Ulrich K, Ulrich A, Ewald D (2008b) Diversity of endophytic bacterial communities in poplar grown under field conditions. FEMS Microbiol Ecol 63:169–180PubMedCrossRefGoogle Scholar
  107. Van Elsas JD, Chiurazzi M, Mallon CA, Elhottova D, Kristufek V, Salles JF (2012) Microbial diversity determines the invasion of soil by a bacterial pathogen. Proc Natl Acad Sci U S A 109:1159–1164PubMedPubMedCentralCrossRefGoogle Scholar
  108. Verginer M, Leitner E, Berg G (2010) Production of volatile metabolites by grape-associated microorganisms. J Agric Food Chem 58:8344–8350PubMedCrossRefGoogle Scholar
  109. Vlamakis H, Chai Y, Beauregard P, Losick R, Kolter R (2013) Sticking together: building a biofilm the Bacillus subtilis way. Nat Rev Microbiol 11:157–168PubMedPubMedCentralCrossRefGoogle Scholar
  110. Weller DM (2007) Pseudomonas biocontrol agents of soilborne pathogens: looking back over 30 years. Phytopathology 97:250–256PubMedCrossRefGoogle Scholar
  111. Wilkinson S, Lowe LA (1966) Structures of the polymyxins A and the question of identity with the polymyxins M. Nature 212:311PubMedCrossRefGoogle Scholar
  112. Woolhouse M, Farrar J (2014) Policy: an intergovernmental panel on antimicrobial resistance. Nature 509:555–557PubMedCrossRefGoogle Scholar
  113. Xie H, Pasternak JJ, Glick BR (1996) Isolation and characterization of mutants of the plant growth-promoting rhizobacterium Pseudomonas putida CR12-2 that overproduce indoleacetic acid. Curr Microbiol 32:67–71CrossRefGoogle Scholar
  114. Xie JB, Du Z, Bai L, Tian C, Zhang Y, Xie JY, Wang T, Liu X, Chen X, Cheng Q, Chen S, Li J (2014) Comparative genomic analysis of N2-fixing and non-N2-fixing Paenibacillus spp.: organization, evolution and expression of the nitrogen fixation genes. PLoS Genet 10, e1004231PubMedPubMedCentralCrossRefGoogle Scholar
  115. Zhao LJ, Yang XN, Li XY, Mu W, Liu F (2011) Antifungal, insecticidal and herbicidal properties of volatile components from Paenibacillus polymyxa strain BMP-11. Agric Sci China 10:728–736CrossRefGoogle Scholar
  116. Zhou J, He Z, Yang Y, Deng Y, Tringe SG, Alvarez-Cohen L (2015) High-throughput metagenomic technologies for complex microbial community analysis: open and closed formats. MBio 6:e02288–14PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Daria Rybakova
    • 1
  • Tomislav Cernava
    • 1
  • Martina Köberl
    • 1
    • 2
  • Stefan Liebminger
    • 3
  • Mohammad Etemadi
    • 1
    • 2
  • Gabriele Berg
    • 1
    Email author
  1. 1.Institute of Environmental BiotechnologyGraz University of TechnologyGrazAustria
  2. 2.Austrian Centre of Industrial Biotechnology (ACIB GmbH)GrazAustria
  3. 3.Roombiotic GmbHGrazAustria

Personalised recommendations