Skip to main content
Log in

Assessment of functional diversity and structure of phytate-hydrolysing bacterial community in Lolium perenne rhizosphere

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Background and aims

Plant growth is frequently limited by the availability of inorganic phosphorus (P) in the soil. In most soils, a considerable amount of the soil P is bound to organic molecules. Of these, phytate is the most abundant identifiable organic P form, but is not readily available to plants. In contrast, microorganisms have been shown to degrade phytate with high efficiency. The current study aims to characterize the members of the phytate-hydrolysing bacterial community in rhizosphere, and the molecular and enzymatic ability of these bacteria to degrade phytate.

Methods and results

The phytate-hydrolysing bacterial community was characterized from the rhizosphere of plants cultivated in the presence or absence of phytate supplementation. Major changes in the bacterial community structure were observed with both culture-dependent and -independent methods, which highlighted the predominance of Proteobacteria and Actinobacteria. Phytase activity was detected for a range of rhizobacterial isolates as well as the presence of, β-propeller phytases (BPP) for both isolates and directly in a soil sample.

Conclusion

A wide taxonomic range of functional phytate utilizers have been discovered, in soil bacterial taxa that were previously not well known for their ability to utilise phytate as P or C sources. This study provides new insights into microbial carbon and phosphorus cycling in soil.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abdel-El-Haleem D (2003) Acinetobacter: environmental and biotechnological applications. Afr J Biotechnol 2:71–74

    Article  Google Scholar 

  • Adelt S, Podeschwa M, Dallmann G, Altenbach H-J, Vogel G (2003) Stereo- and regiospecificity of yeast phytases–chemical synthesis and enzymatic conversion of the substrate analogues neo- and l-chiro-inositol hexakisphosphate. Bioorg Chem 31:44–67

    Article  CAS  PubMed  Google Scholar 

  • Ahmed D (1976) Mineralization of inositol hexaphosphate in soil at varying static moisture levels. Plant Soil 44:253–256

    Article  CAS  Google Scholar 

  • Barbe V, Vallenet D, Fonknechten N et al (2004) Unique features revealed by the genome sequence of Acinetobacter sp. ADP1, a versatile and naturally transformation competent bacterium. Nucleic Acids Res 32:5766–5779

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barea JM, Navarro E, Montoya E (1976) Production of plant growth regulators by rhizosphere phosphate-solubilizing bacteria. J Appl Bacteriol 40:129–134

    Article  CAS  PubMed  Google Scholar 

  • Belimov AA, Dodd IC, Hontzeas N, Theobald JC, Safronova VI, Davies WJ (2009) Rhizosphere bacteria containing 1-aminocyclopropane-1-carboxylate deaminase increase yield of plants grown in drying soil via both local and systemic hormone signalling. New Phytol 181:413–423

    Article  CAS  PubMed  Google Scholar 

  • Berg G, Eberl L, Hartmann A (2005) The rhizosphere as a reservoir for opportunistic human pathogenic bacteria. Environ Microbiol 7:1673–1685

    Article  CAS  PubMed  Google Scholar 

  • Berry DF, Shang C, Zelazny LW (2009) Measurment of phytase activity in soil using a chromophoric tethered phytic acid probe. Soil Biol Biochem 41:192–200

    Article  CAS  Google Scholar 

  • Bissett A, Richardson AE, Baker G, Kirkegaard J, Thrall PH (2013) Bacterial community response to tillage and nutrient additions in a long-term wheat cropping experiment. Soil Biol Biochem 58:281–292

    Article  CAS  Google Scholar 

  • Cheng C, Lim BL (2006) Beta-propeller phytases in the aquatic environment. Arch Microbiol 185:1–13

    Article  CAS  PubMed  Google Scholar 

  • Cho J, Lee C, Kang S et al (2005) Molecular cloning of a phytase gene (phy M) from Pseudomonas syringae MOK1. Curr Microbiol 51:11–15

    Article  CAS  PubMed  Google Scholar 

  • Cunliffe M, Kertesz MA (2006) Effect of Sphingobium yanoikuyae B1 inoculation on bacterial community dynamics and polycyclic aromatic hydrocarbon degradation in aged and freshly PAH-contaminated soils. Environ Pollut 144:228–237

    Article  CAS  PubMed  Google Scholar 

  • Dao TH (2007) Ligand effects on inositol phosphate solubility and bioavailability in animal manures. In: Turner BL, Richardson AE, Mullaney EJ (eds) Inositol phosphates: linking agriculture and environment. CAB International, Oxford, pp 169–185

    Chapter  Google Scholar 

  • DeSantis TZ, Hugenholtz P, Larsen N et al (2006a) Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl Environ Microbiol 72:5069–5072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • DeSantis TZ, Hugenholtz P, Keller K et al (2006b) NAST: a multiple sequence alignment server for comparative analysis of 16S rRNA genes. Nucleic Acids Res 34:W394–W399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fry J, Wood M, Poole PS (2001) Investigation of myo-inositol catabolism in Rhizobium leguminosarum bv. viciae and its effect on nodulation competitiveness. Mol Plant Microbe Interact 14:1016–1025

    Article  CAS  PubMed  Google Scholar 

  • Fu S, Sun J, Qian L, Li Z (2008) Bacillus phytases: present scenario and future perspectives. Appl Biochem Biotechnol 151:1–8

  • George TS, Richardson AE, Simpson RJ (2005) Behaviour of plant-derived extracellular phytase upon addition to soil. Soil Biol Biochem 37:977–988

    Article  CAS  Google Scholar 

  • Giles CD, Richardson AE, Druschel GK, Hill JE (2012) Organic anion-driven solubilization of precipitated and sorbed phytate improves hydrolysis by phytases and bioavailability to Nicotiana tabacum. Soil Sci 177:591–598

    Article  CAS  Google Scholar 

  • Greiner R, Lim BL, Cheng C, Carlsson NG (2007) Pathway of phytate dephosphorylation by beta-propeller phytases of different origins. Can J Microbiol 53:488–495

    Article  CAS  PubMed  Google Scholar 

  • Haas D, Defago D (2005) Biological control of soil-borne pathogens by fluorescent pseudomonads. Nat Rev Microbiol 3:307–319

    Article  CAS  PubMed  Google Scholar 

  • Hammond JP, Broadley MR, White PJ (2004) Genetic responses to phosphorus deficiency. Ann Bot (Lond) 94:323–332

    Article  CAS  Google Scholar 

  • Hayes JE, Simpson RJ, Richardson AE (2000a) The growth and phosphorus utilisation of plants in sterile media when supplied with inositol hexaphosphate, glucose 1-phosphate or inorganic phosphate. Plant Soil 220:165–174

    Article  CAS  Google Scholar 

  • Hayes JE, Richardson AE, Simpson RJ (2000b) Components of organic phosphorus in soil extracts that are hydrolysed by phytase and acid phosphatase. Biol Fertil Soils 32:279–286

    Article  CAS  Google Scholar 

  • Hill JE, Richardson AE (2006) Isolation and assessment of microorganisms that utilize phytate. In: Turner BL, Richardson AE, Mullaney EJ (eds) Inositol phosphates: linking agriculture and environment. CAB International, Oxford

    Google Scholar 

  • Hill JE, Kysela D, Elimelech M (2007) Isolation and assessment of phytate-hydrolysing bacteria from the DelMarVa Peninsula. Environ Microbiol 9:3100–3107

    Article  CAS  PubMed  Google Scholar 

  • Hinsinger P (2001) Bioavailability of soil inorganic P in the rhizosphere as affected by root-induced chemical changes: a review. Plant Soil 237:173–195

    Article  CAS  Google Scholar 

  • Huang H, Shi P, Wang Y et al (2009) Diversity of beta-propeller phytase genes in the intestinal contents of grass carp provides insight into the release of major phosphorus from phytate in nature. Appl Environ Microbiol 75:1508–1516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang H, Zhang R, Fu D et al (2011) Diversity, abundance and characterization of ruminal cysteine phytases suggest their important role in phytate degradation. Environ Microbiol 13:747–757

    Article  CAS  PubMed  Google Scholar 

  • Idriss EE, Makarewicz O, Farouk A et al (2002) Extracellular phytase activity of Bacillus amyloliquefaciens FZB45 contributes to its plant-growth-promoting effect. Microbiology 148:2097–2109

    Article  CAS  PubMed  Google Scholar 

  • In MJ, Jang ES, Kim YJ, Oh NS (2004) Purification and properties of an extracellular acid phytase from Pseudomonas fragi Y9451. J Microbiol Biotechnol 14:1004–1008

    CAS  Google Scholar 

  • Jiang G, Krishnan AH, Kim YW, Wacek TJ, Krishnan HB (2001) A functional myo-inositol dehydrogenase gene is required for efficient nitrogen fixation and competitiveness of Sinorhizobium fredii USDA191 to nodulate soybean (Glycine max [L.] Merr.). J Bacteriol 183:2595–2604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jorquera MA, Hernandez MT, Rengel Z, Marschner P, de la Luz Mora M (2008a) Isolation of culturable phosphobacteria with both phytate-mineralization and phosphate-solubilization activity from the rhizosphere of plants grown in a volcanic soil. Biol Fertil Soils 44:1025–1034

    Article  CAS  Google Scholar 

  • Jorquera M, Martinez O, Maruyama F, Marschner P, de la Luz Mora M (2008b) Current and future biotechnological applications of bacterial phytases and phytase-producing bacteria. Microbes Environ 23:182–191

    Article  PubMed  Google Scholar 

  • Jorquera MA, Crowley DE, Marschner P, Greiner R, Fernandez MT, Romero D, Menezes-Blackburn D, de la Luz Mora M (2011) Identification of β-propeller phytase-encoding genes in culturable Paenibacillus and Bacillus spp. from the rhizosphere of pasture plants on volcanic soils. FEMS Microbiol Ecol 75:163–172

    Article  CAS  PubMed  Google Scholar 

  • Jorquera MA, Shaharoona B, Nadeem SM, de la Luz Mora M, Crowley DE (2012) Plant growth-promoting rhizobacteria associated with ancient clones of creosote bush (Larrea tridentata). Microb Ecol 64:1008–1017

    Article  PubMed  Google Scholar 

  • Jorquera MA, Saavedra N, Maruyama F, Richardson AE, Crowley DE, Catrilaf RC, Henriquez EJ, de la Luz Mora M (2013) Phytate addition to soil induces changes in the abundance and expression of Bacillus β-propeller phytase genes in the rhizosphere. FEMS Microbiol Ecol 83:352–360

    Article  CAS  PubMed  Google Scholar 

  • Jorquera MA, Inostroza NG, Lorena ML, Barra PJ, Marileo LG, Rilling JI, Campos DC, Crowley DE, Richardson AE, Mora ML (2014) Bacterial community structure and detection of putative plant growth-promoting rhizobacteria associated with plants grown in Chilean agro-ecosystems and undisturbed ecosystems. Boil Fertil Soils 50:1141–1153

    Article  Google Scholar 

  • Kerovuo J, Lauraeus M, Nurminen P, Kalkkinen N, Apajalahti J (1998) Isolation, characterization, molecular gene cloning, and sequencing of a novel phytase from Bacillus subtilis. Appl Environ Microbiol 64:2079–2085

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kertesz MA, Leisinger T, Cook AM (1993) Proteins induced by sulfate limitation in Escherichia coli, Pseudomonas putida, or Staphylococcus aureus. J Bacteriol 175:1187–1190

    CAS  PubMed  PubMed Central  Google Scholar 

  • King J, Thorogood D, Edwards KJ, Armstead IP et al (2008) Development of a genomic microsatellite library in perennial ryegrass (Lolium perenne) and its use in trait mapping. Ann Bot (Lond) 101:845–853

    Article  CAS  Google Scholar 

  • Konietzny U, Greiner R (2004) Bacterial phytase: potential application, in vivo function and regulation of its synthesis. Braz J Microbiol 35:11–18

    Article  CAS  Google Scholar 

  • Lambers H, Shane MW, Cramer MD, Pearse SJ, Veneklaas EJ (2006) Root structure and functioning for efficient acquisition of phosphorus: matching morphological and physiological traits. Ann Bot 98:693–713

    Article  PubMed  PubMed Central  Google Scholar 

  • Lane DJ (1991) 16S/23S rRNA sequencing. In: Stackebrandt E, Goodfellow M (eds) Nucleic acid techniques in bacterial systematics. Wiley, New York, pp 115–147

    Google Scholar 

  • Lee SH, Malone C, Kemp PF (1993) Use of 16S ribosomal-RNA-targeted fluorescent-probes to increase signal strength and measure cellular RNA from natural planktonic bacteria. Mar Ecol Prog Ser 101:193–201

    Article  CAS  Google Scholar 

  • Lei XG, Stahl CH (2001) Biotechnological development of effective phytases for mineral nutrition and environmental protection. Appl Microbiol Biotechnol 57:474–481

    Article  CAS  PubMed  Google Scholar 

  • Li M, Osaki M, Rao IM, Tadano T (1997) Secretion of phytase from the roots of several plant species under phosphorus-deficient conditions. Plant Soil 195:161–169

    Article  Google Scholar 

  • Lim BL, Yeung P, Cheng C, Hill JE (2007) Distribution and diversity of phytate-mineralizing bacteria. ISME J 1:321–330

    CAS  PubMed  Google Scholar 

  • Lopez-Lopez A, Rogel MA, Ormeno-Orrillo E, Martinez-Romero J, Martinez-Romero E (2010) Phaseolus vulgaris seed-borne endophytic community with novel bacterial species such as Rhizobium endophyticum sp. nov. Syst Appl Microbiol 33:322–327

    Article  PubMed  Google Scholar 

  • Lugtenberg B, Kamilova F (2009) Plant-growth-promoting rhizobacteria. Annu Rev Microbiol 63:541–556

  • Marilley L, Aragno M (1999) Phylogenetic diversity of bacterial communities differing in degree of proximity of Lolium perenne and Trifolium repens roots. Appl Soil Ecol 13:127–136

    Article  Google Scholar 

  • Martin CJ, Evans WJ (1987) Phytic acid: divalent cation interactions. V. titrimetric, calorimetric, and binding studies with cobalt(ii) and nickel(ii) and their comparison with ions. J Inorg Biochem 30:101–119

    Article  CAS  Google Scholar 

  • Martin M, Celi L, Barberis E (2004) Desorption and plant availability of myo-inositol hexaphosphate adsorbed on goethite. Soil Sci 169:115–124

    Article  CAS  Google Scholar 

  • Molbak L, Molin S, Kroer N (2007) Root growth and exudates production define the frequency of horizontal plasmid transfer in the rhizosphere: plasmid transfer in the rhizosphere. FEMS Microbiol Ecol 59:167–176

    Article  PubMed  Google Scholar 

  • Muhling M, Woolven-Allen J, Murrell JC, Joint I (2008) Improved group-specific PCR primers for denaturing gradient gel electrophoresis analysis of the genetic diversity of complex microbial communities. ISME J 2:379–392

    Article  CAS  PubMed  Google Scholar 

  • Mullaney EJ, Ullah AH (2003) The term phytase comprises several different classes of enzymes. Biochem Biophys Res Commun 312:179–184

    Article  CAS  PubMed  Google Scholar 

  • Mullaney EJ, Daly CB, Ullah AH (2000) Advances in phytase research. Adv Appl Microbiol 47:157–199

    Article  CAS  PubMed  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Muyzer G, de Waal EC, Uitterlinden AG (1993) Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl Environ Microbiol 59:695–700

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nakashima BA, McAllister TA, Sharma R, Selinger LB (2007) Diversity of phytases in the rumen. Microb Ecol 53:82–88

    Article  CAS  PubMed  Google Scholar 

  • Peix A, Lang E, Verbarg S, Sproer C, Rivas R, Santa-Regina I, Mateos PF, Martinez-Molina E, Rodriguez-Barrueco C, Velazquez E (2009) Acinetobacter strains IH9 and OCI1, two rhizospheric phosphate solubilizing isolates able to promote plant growth, constitute a new genomovar of Acinetobacter calcoaceticus. Syst Appl Microbiol 32:334–341

    Article  CAS  PubMed  Google Scholar 

  • Raghothama K, Karthikeyan A (2005) Phosphate acquisition. Plant Soil 274:37–49

    Article  CAS  Google Scholar 

  • Reasoner DJ, Geldreich EE (1985) A new medium for the enumeration and subculture of bacteria from potable water. Appl Environ Microbiol 49:1–7

    CAS  PubMed  PubMed Central  Google Scholar 

  • Richardson AE, Hadobas PA (1997) Soil isolates of Pseudomonas spp. that utilize inositol phosphates. Can J Microbiol 43:509–516

    Article  CAS  PubMed  Google Scholar 

  • Richardson AE, Simpson RJ (2011) Soil microorganisms mediating phosphorus availability update on microbial phosphorus. Plant Physiol 156:989–996

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Richardson AE, Hadobas PA, Hayes JE (2001a) Extracellular secretion of Aspergillus phytase from Arabidopsis roots enables plants to obtain phosphorus from phytate. Plant J 25:641–649

    Article  CAS  PubMed  Google Scholar 

  • Richardson AE, Hadobas PA, Hayes JE, O’hara CP, Simpson RJ (2001b) Utilization of phosphorus by pasture plants supplied with myo-inositol hexaphosphate is enhanced by the presence of soil micro-organisms. Plant Soil 229:47–56

    Article  CAS  Google Scholar 

  • Richardson AE, Barea JM, McNeill AM, Prigent-Combaret C (2009) Acquisition of phosphorus and nitrogen in the rhizosphere and plant growth promotion by microorganisms. Plant Soil 321:305–339

  • Rose TM, Henikoff JG, Henikoff S (2003) CODEHOP (COnsensus-DEgenerate Hybrid Oligonucleotide Primer) PCR primer design. Nucleic Acids Res 31:3763–3766

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sanguin H, Sarniguet A, Gazengel K, Moënne-Loccoz Y, Grundmann GL (2009) Rhizosphere bacterial communities associated with disease suppressiveness stages of take-all decline in wheat monoculture. New Phytol 184:694–707

    Article  CAS  PubMed  Google Scholar 

  • Schmalenberger A, Hodge S, Bryant A, Hawkesford MJ, Singh BK, Kertesz MA (2008) The role of Variovorax and other Comamonadaceae in sulfur transformations by microbial wheat rhizosphere communities exposed to different sulfur fertilization regimes. Environ Microbiol 10:1486–1500

    Article  CAS  PubMed  Google Scholar 

  • Sharma NC, Sahi SV (2005) Characterization of phosphate accumulation in Lolium multiflorum for remediation of phosphorus-enriched soils. Environ Sci Technol 39:5475–5480

    Article  CAS  PubMed  Google Scholar 

  • Shin S, Ha NC, Oh BC, Oh TK, Oh BH (2001) Enzyme mechanism and catalytic property of beta propeller phytase. Structure 9:851–858

    Article  CAS  PubMed  Google Scholar 

  • Sorensen SR, Albers CN, Aamand J (2008) Rapid mineralization of the phenylurea herbicide diuron by Variovorax sp. strain SRS16 in pure culture and within a two-member consortium. Appl Environ Microbiol 74:2332–2340

    Article  PubMed  PubMed Central  Google Scholar 

  • Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6. Mol Biol Evol 30:2725–2729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Turner BL, Leytem AB (2004) Phosphorus compounds in sequential extracts of animal manures: chemical speciation and a novel fractionation procedure. Environ Sci Technol 38:6101–6108

    Article  CAS  PubMed  Google Scholar 

  • Turner BL, Paphazy MJ, Haygarth PM, McKelvie ID (2002) Inositol phosphates in the environment. Philos Trans R Soc Lond B Biol Sci 357:449–469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Uhlik O, Jecna K, Mackova M, Vlcek C, Hroudova M, Demnerova K, Paces V, Macek T (2009) Biphenyl-metabolizing bacteria in the rhizosphere of horseradish and bulk soil contaminated by polychlorinated biphenyls as revealed by stable isotope probing. Appl Environ Microbiol 75:6471–6477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Unno Y, Okubo K, Wasaki J, Shinano T, Osaki M (2005) Plant growth promotion abilities and microscale bacterial dynamics in the rhizosphere of Lupin analysed by phytate utilization ability. Environ Microbiol 7:396–404

    Article  PubMed  Google Scholar 

  • Vacheron J, Desbrosses G, Bouffaud ML, Touraine B, Moënne-Loccoz Y, Muller D, Legendre L, Wisniewski-Dyé F, Prigent-Combaret C (2013) Plant growth-promoting rhizobacteria and root system functioning. Front Plant Sci 4:356

  • Vats P, Bhattacharyya MS, Banerjee UC (2005) Use of phytases (myo-inositolhexakisphosphate phosphohydrolases) for combatting environmental pollution: a biological approach. Crit Rev Environ Sci Technol 35:469–486

    Article  CAS  Google Scholar 

  • Yanke LJ, Bae HD, Selinger LB, Cheng KJ (1998) Phytase activity of anaerobic ruminal bacteria. Microbiology 144:1565–1573

    Article  CAS  PubMed  Google Scholar 

  • Zimmermann P, Zardi G, Lehmann M, Zeder C, Amrhein N, Frossard E, Bucher M (2003) Engineering the root-soil interface via targeted expression of a synthetic phytase gene in trichoblasts. Plant Biotechnol J 1:353–360

    Article  CAS  PubMed  Google Scholar 

  • Zysko A, Sanguin H, Hayes A, Wardleworth L, Zeef LAH, Sim A, Paterson E, Singh BK, Kertesz MA (2012) Transcriptional response of Pseudomonas aeruginosa to a phosphate-deficient Lolium perenne rhizosphere. Plant Soil 359:25–44

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank John Hammond and Gary Bending for assistance with soil sampling at Warwick HRI. This project was supported by the Natural Environment Research Council (NERC) and by a research grant from the University of Sydney. We thank John Morton for technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hervé Sanguin.

Additional information

Responsible Editor: Benjamin L. Turner.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. S1

Distribution of phytate-hydrolysing bacteria (OTUs) from L. perenne rhizosphere. Number of bacterial isolates (for each OTU) obtained on PMI (A and C) and PMII (B and D) with (black) or without (white) phytate supplemented is represented for Lindow soil (A and B) and Warwick soil (C and D). The symbols (▲) and (△) indicate the OTUs for which one or two isolates were selected to test their ability to utilize phytate as C source and/or P source. Solid and open triangles indicate the soil treatment, with or without phytate supplemented, respectively. (PPT 225 kb)

Fig. S2

Multiple sequence alignment of amino acids BPP sequences used for the design of phytase-specific PCR primers. The conserved sequence motifs targeted are highlighted in colours and the primer position is indicated at the bottom. The sequences used for the design of each primer are in enclosed boxes. The numbers (I to IIIc) next to the strain names indicate BPP groups defined in Lim et al. (2007). BAP, Bacillus amyloliquefaciens BAP (AAW28542); ATCC14580, Bacillus licheniformis ATCC14580 (YP_090097) ; DS11, Bacillus sp. DS11 (AAC38573); 168, Bacillus subtilis subsp. subtilis 168 (NP_389861); ATCC23134, Microscilla marina ATCC23134 (EAY24393); CB15, Caulobacter crescentus CB15 (AAK23276); RB2256, Sphingomonas alaskensis RB2256 (ABF54827.1); SKA58, Sphingomonas sp. SKA58 (EAT09404); RW1, Sphingomonas wittichii RW1 (YP_001261037); HTCC2633, Oceanicaulis alexandrii HTCC2633 (ZP_00953252); MCS10, Maricaulis maris MCS10 (ABI66660); ATCC15444, Hyphomonas neptunium ATCC15444 (ABI78101); HTCC2503, Parvularcula bermudensis HTCC2503 (EAQ17779); Deepecotype, Alteromonas macleodii ‘Deepecotype’ (YP_002126691); MED297, Reinekea sp. MED297 (EAR10111); S14, Vibrio angustum S14 (EAS63574); HTCC2207, marine gamma proteobacterium HTCC2207 (EAS47070); 2–40, Saccharophagus degradans 2–40 (ABD83254); TAC125, Pseudoalteromonas haloplanktis TAC125 (CAI85536); ANA-3, Shewanella sp. ANA-3 (ABK48437); MR-4, Shewanella sp. MR-4 (ABI39156); MR-7, Shewanella sp. MR-7 (ABI42881); MR-1, Shewanella oneidensis MR-1 (AAN55555); RED65, Oceanobacter sp. RED65 (EAT12633); OS145, Idiomarina baltica OS145 (EAQ32794); L2TR, Idiomarina loihiensis L2TR (AAV80945); Pf-5, Pseudomonas fluorescens Pf-5 (YP_260816); 1448A , Pseudomonas syringae pv. Phaseolicola 1448A (AAZ36343); DC3000, Pseudomonas syringae pv. Tomato DC3000 (AAO56720); ymp, Pseudomonas mendocina ymp (YP_001189542); DJ, Azotobacter vinelandii DJ (YP_002797726). (PPTX 114 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sanguin, H., Wilson, N.L. & Kertesz, M.A. Assessment of functional diversity and structure of phytate-hydrolysing bacterial community in Lolium perenne rhizosphere. Plant Soil 401, 151–167 (2016). https://doi.org/10.1007/s11104-015-2512-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-015-2512-7

Keywords

Navigation