Skip to main content
Log in

Non-linear dynamics of litter decomposition under different grazing management regimes

Plant and Soil Aims and scope Submit manuscript

Abstract

Aims

To understand and model the dynamics of litter decomposition in a climatically seasonal region subject to different modalities of land pasture management.

Methods

Decomposition was quantified through the litterbag technique. Sampling was performed at monthly intervals on an annual basis with replications for 2008, 2009 and 2010. Treatments were native vegetation (NV) and grazed (G), grazed and N-fertilized (GF), hayed (H), hayed and N-fertilized (HF) plots. For each combination of treatment and year, a sigmoid model was fitted. Parameters included remnant litter, steepness and inflection of decomposition curve.

Results

The sigmoid model adjusted excellently well the data. In considering the overall effect on litter decomposition, treatments differ among them as follows symbolically: ((GF > G) > (HF > H)) > > NV. Results are consistent across the yearly replications.

Conclusion

Pasture management (grazed versus hayed) is the primary factor controlling the rate of decomposition, whereas fertilization has a secondary role. The sigmoid model captures realistically the different phases of decomposition detected over a year, namely stationary at conditions of low temperature (later autumn and winter), accelerated at increasing temperature and humidity (transition from spring to summer) and decelerated when residual organic matter becomes less profitable and weather conditions more stringent (summer and earlier autumn).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Finland)

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

References

  • Abril A, Bucher EH (2001) Overgrazing and soil carbon dynamics in the western Chaco of Argentina. Appl Soil Ecol 16:243–249

    Article  Google Scholar 

  • Aerts R, de Caluwe H, Beltman B (2003) Plant community mediated vs. nutritional controls on litter decomposition rates in grasslands. Ecology 84:3198–3208. doi:10.1890/02-0712

    Article  Google Scholar 

  • Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B (Methodol) 289–300

  • Bocock KL, Gilbert O, Capstick CK, Twinn DC, Ward JS, Woodman MJ (1960) Change in leaf litter when placed on the surface of soils with contrasting humus types. Losses in dry weight of oak and ash leaf litter. J Soil Sci 11:1–9. doi:10.1111/j.1365-2389.1960.tb02196.x

    Article  CAS  Google Scholar 

  • Bryant JP, Provenza FD, Pastor J, Reichardt PB, Clausen TB, du Toit JT (1991) Interactions between woody plants and browsing mammals mediated by secondary metabolites. Annu Rev Ecol Syst 22:431–446

    Article  Google Scholar 

  • Bucher E (1982) Chaco and Caatinga-South American arid savannas. Woodlands and thickets. In: Huntley BJ, Walker BH (eds) Ecology of tropical savannas. Springer, Berlin, pp 48–79

    Chapter  Google Scholar 

  • Bucher EH, Torres PA, Abril A (2003) Litter quality and litter removal by the native fauna in the Chaco woodland of Argentina. J Trop Ecol 19:337–341

    Article  Google Scholar 

  • Carnevale NJ, Lewis JP (2001) Litterfall and organic matter decomposition in a seasonal forest of the eastern Chaco (Argentina). Rev Biol Trop 49:203–212

    CAS  PubMed  Google Scholar 

  • Carranza C, Noe L, Merlo C, Ledesma M, Abril A (2012) Effect of forest clearing type on the decomposition of native and introduced pastures in the Arid Chaco, Argentina. RIA 38:97–107

    Google Scholar 

  • Castro H, Fortunel C, Freitas H (2010) Effects of land abandonment on plant litter decomposition in a Montado system: relation to litter chemistry and community functional parameters. Plant Soil 333:181–190. doi:10.1007/s11104-010-0333-2

    Article  CAS  Google Scholar 

  • Cheshire MV, Chapman SJ (1996) Influence of the N and P status of plant material and of added N and P on the mineralization of C from 14C-labelled ryegrass in soil. Biol Fertil Soils 21:166–170

    Article  CAS  Google Scholar 

  • Coûteaux MM, Bottner P, Berg B (1995) Litter decomposition, climate and liter quality. Trends Ecol Evol 10:63–66

    Article  PubMed  Google Scholar 

  • Craine JM, Morriw C, Fierer N (2007) Microbial nitrogen limitation increases decomposition. Ecology 88:2105–2113. doi:10.1890/06-1847.1

    Article  PubMed  Google Scholar 

  • Demarchi DA, García Ministro A (2008) Genetic structure of native populations from the Gran Chaco region, South America. Int J Hum Genet 8:131–141

    Google Scholar 

  • Fontaine S, Mariotti A, Abbadie L (2003) The priming effect of organic matter: a question of microbial competition? Soil Biol Biochem 35:837–843. doi:10.1016/S0038-0717(03)00123-8

    Article  CAS  Google Scholar 

  • Franzluebbers AJ, Stuedemann JA (2009) Soil-profile organic carbon and total nitrogen during 12 years of pasture management in the Southern Piedmont USA. Agric Ecosyst Environ 129:28–36. doi:10.1016/j.agee.2008.06.013

    Article  CAS  Google Scholar 

  • Freschet GT, Weedon JT, Aerts R, van Hal JR, Cornelissen JHC (2012) Interspecific differences in wood decay rates: insights from a new short-term method to study long-term wood decomposition. J Ecol 100:161–170. doi:10.1111/j.1365-2745.2011.01896.x

    Article  Google Scholar 

  • Garibaldi LA, Semmartin M, Chaneton EJ (2007) Grazing-induced changes in plant composition affect litter quality and nutrient cycling in flooding Pampa grasslands. Oecologia 151:650–662. doi:10.1007/s00442-006-0615-9

    Article  PubMed  Google Scholar 

  • Garland JL, Zabaloy MC, Birmele M, Mackowiak CL, Lehman RM, Frey SD (2012) Examining N-limited soil microbial activity using community-level physiological profiling based on O2 consumption. Soil Biol Biochem 47:46–52

    Article  CAS  Google Scholar 

  • Giese M, Gao YZ, Zhao Y, Pan Q, Lin S, Peth S, Brueck H (2009) Effects of grazing and rainfall variability on root and shoot decomposition in a semi-arid grassland. Appl Soil Ecol 41:8–18. doi:10.1016/j.apsoil.2008.08.002

    Article  Google Scholar 

  • Grandy AS, Salam DS, Wickings K, McDaniel MD, Culman SW, Snapp SS (2013) Soil respiration and litter decomposition responses to nitrogen fertilization rate in no-till corn systems. Agric Ecosyst Environ 179:35–40. doi:10.1016/j.agee.2013.04.020

    Article  CAS  Google Scholar 

  • Gregorich EG, Janzen HH (1998) Microbially mediated processes: decomposition. In: Summer M (ed) Handbook of soil science. CRC Press, Boca Raton, pp 106–119

    Google Scholar 

  • Güsewell S, Gessner MO (2009) N : P ratios influence litter decomposition and colonization by fungi and bacteria in microcosms. Funct Ecol 23:211–219. doi:10.1111/j.1365-2435.2008.01478.x

    Article  Google Scholar 

  • Haynes RJ, Williams PH (1993) Nutrient cycling and soil fertility in the grazed pasture ecosystem. Adv Agron 49:119–199

    Article  CAS  Google Scholar 

  • Hobbie SE (2008) Nitrogen effects on decomposition: a five-year experiment in eight temperate sites. Ecology 89:2633–2644. doi:10.1890/07-1119.1

    Article  PubMed  Google Scholar 

  • Holland E, Parton WJ, Detling JK, Coppock DL (1992) Physiological responses of plant populations to herbivory and their consequences for ecosystem nutrient flow. Am Nat 140:685–706

    Article  CAS  PubMed  Google Scholar 

  • Johnson LC, Matchett JR (2001) Fire and grazing regulate belowground processes in tall grass prairie. Ecology 82:3377–3389. doi:10.1890/0012-9658(2001)082[3377:FAGRBP]2.0.CO;2

    Article  Google Scholar 

  • Karlin MS (2012) Cambios temporales del clima en la subregión del Chaco Árido. Multequina 21–36

  • Keeler BL, Hobbie SE, Kellogg LE (2009) Effects of long-term nitrogen addition on microbial enzyme activity in eight forested and grassland sites: implications for litter and soil organic matter decomposition. Ecosystems 12:1–15. doi:10.1007/s10021-008-9199-z

    Article  CAS  Google Scholar 

  • Knops JMH, Naeem S, Reich PB (2007) The impact of elevated CO2, increased nitrogen availability and biodiversity on plant tissue quality and decomposition. Glob Chang Biol 13:1960–1971. doi:10.1111/j.1365-2486.2007.01405.x

    Article  Google Scholar 

  • Knorr M, Frey SD, Curtis PS (2005) Nitrogen additions and litter decomposition: a meta-analysis. Ecology 86:3252–3257. doi:10.1890/05-0150

    Article  Google Scholar 

  • Kononova MM (1975) Humus of virgin and cultivated soils. In: Gieseking JE (ed) Soil components I. Organic components. Springer, New York, pp 475–526

    Chapter  Google Scholar 

  • Kumar K, Goh KM (2000) Crop residues and management practices: effects on soil quality, soil nitrogen dynamics, c rop yield, and nitrogen recovery. Adv Agron 68:197–319

    Article  CAS  Google Scholar 

  • Liu P, Huang J, Jianxin Sun O, Han X (2010) Litter decomposition and nutrient release as affected by soil nitrogen availability and litter quality in a semiarid grassland ecosystem. Oecologia 162:771–780. doi:10.1007/s00442-009-1506-7

    Article  PubMed  Google Scholar 

  • Mahney WM (2010) Plant control son decomposition rate: the benefits of restoring abandoned agriculture land with native prairie grasses. Plant Soil 330:91–101. doi:10.1007/s11104-009-0178-8

    Article  Google Scholar 

  • McNaughton SJ (1985) Ecology of a grazing ecosystem: the Serengeti. Ecol Monogr 55:260–294

    Google Scholar 

  • McNaughton SJ, Banyikwa FF, McNaughton MM (1997) Promotion of the cycling of diet-enhancing nutrients by African grazers. Nature 278:1798–1800

    CAS  Google Scholar 

  • Noé L, Abril A (2008) Interacción entre calidad de restos vegetales, descomposición y fertilidad del suelo en el desierto del Monte de Argentina. Ecología Aust 18:181–193

    Google Scholar 

  • Olofsson J, Oksanen L (2002) Role of litter decomposition for the increased primary production in areas heavily grazed by reindeer: a litterbag experiment. Oikos 96:507–515. doi:10.1034/j.1600-0706.2002.960312.x

    Article  Google Scholar 

  • Olson JS (1963) Energy storage and the balance of producers and decomposers in ecological systems. Ecology 44:322–331

    Article  Google Scholar 

  • Palma RM, Prause J, Fontanive AV, Jimenez MP (1998) Litter fall and litter decomposition in a forest of the Parque Chaqueño Argentino. For Ecol Manag 106:205–210. doi:10.1016/j.apsoil.2008.08.002

    Article  Google Scholar 

  • Pastor J, Naiman RJ (1992) Selective foraging and ecosystem processes in boreal forests. Am Nat 139:690–705

    Article  Google Scholar 

  • Perez-Harguindeguy N, Diaz S, Cornelissen JH, Vendramini F, Cabido M, Castellanos A (2000) Chemistry and toughness predict leaf litter decomposition rates over a wide spectrum of functional types and taxa in central Argentina. Plant Soil 218:21–30

    Article  CAS  Google Scholar 

  • Prescott CE (1995) Does nitrogen availability control rates of litter decomposition in forests? Plant Soil 168–169:83–88

    Article  Google Scholar 

  • R Core Team (2014) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL http://www.R-project.org/

  • Rezende CP, Cantarutti RB, Braga JM, Gomide JA, Pereira JM, Ferreira E, Tarré R, Macedo R, Alves BJR, Urquiaga S, Cadisch G, Giller KE, Boddey RM (1999) Litter deposition and disappearance in Brachiaria pastures in the Atlantic forest region of the South of Bahia, Brazil. Nutr Cycl Agroecosyst 54:99–112

    Article  Google Scholar 

  • Ritchie M, Tilman D, Knops JMH (1998) herbivore effects on plant and nitrogen dynamics in oak savanna. Ecology 79:165–177. doi:10.1890/0012-9658(1998)079[0165:HEOPAN]2.0.CO;2)

    Article  Google Scholar 

  • Sánchez Cárdenas S (2007) Acumulación y descomposición de la hojarasca en un pastizal de Panicum maximum Jacq. y en un sistema silvopastoril de P. maximum y Leucaena leucocephala (Lam.) de Wit. Dissertation, La Habana

  • Schuman GE, Reeder JD, Manley JT, Hart RH, Manley WA (1999) Impact of grazing management on the carbon and nitrogen balance of a mixedgrass rangeland. Ecol Appl 19:65–71. doi:10.1890/1051-0761(1999)009[0065:IOGMOT]2.0.CO;2

    Article  Google Scholar 

  • Semmartin M, Aguiar MR, Distel RA, Moretto AS, Ghersa CS (2004) Litter quality and nutrient cycling affected by grazing-induced species replacements along a precipitation gradient. Oikos 107:148–160. doi:10.1111/j.0030-1299.2004.13153.x

    Article  Google Scholar 

  • Semmartin M, Garibaldi ALA, Chaneton EJ (2008) Grazing history effects on above- and below-ground litter decomposition and nutrient cycling in two co-occurring grasses. Plant Soil 303:177–189. doi:10.1007/s11104-007-9497-9

    Article  CAS  Google Scholar 

  • Silveira ML, Rouquette FMJ, Haby VA, Smith GR (2013) Impacts of 37 years of stocking on soil phosphorus distribution in bermudagrass pastures. Agron J 150:999–1004. doi:10.2134/agronj2013.0009

    Google Scholar 

  • Sirotnak JM, Huntly NJ (2000) Direct and indirect effects of herbivores on nitrogen dynamics: voles in riparian areas. Ecology 81:78–87. doi:10.1890/0012-9658(2000)081[0078:DAIEOH]2.0.CO;2

    Article  Google Scholar 

  • Torres PA, Abril AB, Bucher EH (2005) Microbial succession in Litter decomposition in Semiarid-Chaco woodlans. Soil Biol Biochem 37:49–54. doi:10.1016/j.soilbio.2004.04.042

    Article  CAS  Google Scholar 

  • Waldrop MP, Zak DR, Sinsabaugh RL, Gallo M, Lauber C (2004) Nitrogen decomposition modifies soil carbon storage through changes in microbial enzymatic activity. Ecol Appl 14:1172–1177

    Article  Google Scholar 

  • Williams TO, Powell JM, Fernandez Rivera S (1995) Soil fertility maintenance and food crop production in semiarid West Africa: is reliance on manure a sustainable strategy? Outlook Agric 24:43–47

    Google Scholar 

  • Xu G, Hu Y, Wang S, Zhang Z, Chang J, Luo C, Chao Z, Su A, Lin Q, Li Y, Du M (2010) Effects of litter quality and climate change along an elevation gradient on litter mass loss in an alpine meadow ecosystems on a Tibetan plateau. Plant Ecol 209:257–268. doi:10.1007/s11258-009-9714-0

    Article  Google Scholar 

  • Zimov SA, Chuprynin VI, Oreshko AP, Chapin FS, Reynolds JF, Chapin MC (1995) Steppe-tundra transition: a herbivore driven biome shift at the end of the quaternary. Am Nat 146:765–793

    Article  Google Scholar 

Download references

Acknowledgments

We are grateful to INTA, UNT and CONICET for facilitating our research. José Nasca and Pedro Pérez read an early version of our manuscript and made very useful comments. We would particularly like to thank one of the anonymous reviewers for the insightful comments on the paper. Fundings come from CIUNT project 2008–2009, INTA-AUDEAS-CONADEV 2009–20012 and ANPCyT project 2012–1910.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel A. Dos Santos.

Additional information

Responsible Editor: Alfonso Escudero.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 23 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Banegas, N., Albanesi, A.S., Pedraza, R.O. et al. Non-linear dynamics of litter decomposition under different grazing management regimes. Plant Soil 393, 47–56 (2015). https://doi.org/10.1007/s11104-015-2472-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-015-2472-y

Keywords

Navigation