Biological nitrogen fixation in soybean in Argentina: relationships with crop, soil, and meteorological factors

Abstract

Aims

This study aims to (i) asses the contribution of biological N fixation (%Ndfa) in the soybean production area of Argentina, (ii) build a model for predicting %Ndfa using crop, soil, and meteorological variables, and (iii) estimate %Ndfa at the country level using values obtained in this study.

Methods

%Ndfa was assessed in paddocks and experimental plots located in an area 22–39° S and 56–66° W. %Ndfa was determined using the natural 15N abundance method. A complete data set of soil and meteorological variables (n–47) was used to develop a model for predicting %Ndfa.

Results

A median value of %Ndfa in aboveground biomass of 60 % (interquartile range 46–71 %) was estimated. Larger %Ndfa values were observed in areas with high crops yields. When seed yield was above 3.7 Mg ha−1, effective rainfall during fallow and mean temperature in the seed-filling period explained %Ndfa. Below 3.7 Mg ha−1, soil phosphorus content, pH, and effective rainfall in the vegetative period explicated %Ndfa.

Conclusions

Soybean production systems in Argentina showed larger %Ndfa than reported values in literature that may affect global N balances. Identified soil and meteorological variables may be useful for predicting %Ndfa in future studies, taking into account their spatial variation in the soil-plant system.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3

References

  1. Alvarez R, Lavado RS (1998) Climate, organic matter and clay content relationships in the Pampa and Chaco soils, Argentina. Geoderma 83:127–141

    Article  Google Scholar 

  2. Alvarez R, Lemcoff JH, Merzari AH (1995) Nitrogen balance in a soil cultivated with soyabeans. Cienc del Suelo 13:38–40

    CAS  Google Scholar 

  3. Alves BJR, Boddey RM, Urquiaga S (2003) The success of BNF in soybean in Brazil. Plant Soil 252:1–9

    Article  CAS  Google Scholar 

  4. Austin AT, Bustamante MMC, Nardoto GB, Mitre SK, Perez T, Ometto JPHB, Ascarrunz NL, Forti MC, Longo K, Gavito ME, Enrich-Prast A, Martinelli LA (2013) Latin America’s nitrogen challenge. Science 340:149

    Article  CAS  PubMed  Google Scholar 

  5. Austin A, Piñeiro G, Gonzalez-Polo M (2006) More is less: agricultural impacts on the N cycle in Argentina. Biogeochemistry 79:45–60

    Article  Google Scholar 

  6. Bacanamwo M, Purcell LC (1999) Soybean dry matter and N accumulation responses to flooding stress, N sources and hypoxia. J Exp Bot 50:689–696

    Article  CAS  Google Scholar 

  7. Baigorri HE (1997) Elección de cultivares. In: Baigorri HE, Giorda L (eds) El cultivo de soja en la Argentina. INTA-Centro Regional Cordoba, Cordoba, pp 106–122

    Google Scholar 

  8. Boddey RM, Peoples MB, Palmer B, Dart PJ (2000) Use of the 15N natural abundance technique to quantify biological nitrogen fixation by woody perennials. Nutr Cycl Agroecosyst 57:235–270

    Article  Google Scholar 

  9. Boyer EW, Howarth RW, Galloway JN, Dentener FJ, Cleveland C, Asner GP, Green P, Vorosmarty C (2004) Current nitrogen inputs to world regions. In: Mosier AR, Syers KJ, Freney JR (eds) Agriculture and the nitrogen cycle: assessing the impacts of fertilizer use on food production and the environment. Island Press, Washington, pp 221–230

    Google Scholar 

  10. Bray RH, Kurtz LT (1945) Determination of total, organic, and available forms of phosphorus in soils. Soil Sci 59:39–45

    Article  CAS  Google Scholar 

  11. Bremner JM (1965) Inorganic forms of nitrogen. In: CA Black, DD Evans, JL White, LE Ensminger and FE Clark (eds) Methods of soil analysis. Part 2: chemical and Microbiological properties. ASA, Madison-Wisconsin-USA

  12. Collino D, de Luca M, Perticari A, Urquiaga S and Racca R (2007) Aporte de la FBN a la nutrición de la soja y factores que la limitan en diferentes regiones del país. In: XXIII Reunión Latinoamericana de Rizobiología. Los Cocos, Cordoba. Argentina

  13. CONAB (2014) Acompanhamento da safra brasileira. Graos. Cultivos de verao–Safra 2014–15. www.conab.gov.br

  14. Dardanelli JL, de la Casa A, Ateca MR, Zanvettor R, Nuñez Vazquez F and Salas YHP (1992) Validación del balance hidrológico versátil para la rotación sorgo soja bajo dos sistemas de labranza. Revista Agropecuaria de INTA Manfredi e INTA Marcos Juárez: 20–29

  15. De’ath G, Fabricius KE (2000) Classification and regression trees: a powerful yet simple technique for ecological data analysis. Ecology 81:3178–3192

    Article  Google Scholar 

  16. Di Ciocco C, Alvarez R, Andrada Y, Momo F (2004) Nitrogen balance in a soybean crop. Cienc del Suelo 22:48–51

    Google Scholar 

  17. Di Ciocco C, Coviella C, Coviella C, Penon E, Diaz-Zorita M, Lopez S, Lopez S (2008) Biological fixation of nitrogen and N balance in soybean crops in the pampas region. Span J Agric Res 6:114–119

    Article  Google Scholar 

  18. Di Ciocco C, Penón E, Coviella C, Lopez S, Diaz-Zorita M, Momo F, Alvarez R (2011) Nitrogen fixation by soybean in the Pampas: relationship between yield and soil nitrogen balance. Agrochimica 55:305–313

    Google Scholar 

  19. Divito GA, Sadras VO (2014) How do phosphorus, potassium and sulphur affect plant growth and biological nitrogen fixation in crop and pasture legumes? A meta-analysis. Field Crop Res 156:161–171

    Article  Google Scholar 

  20. Draper NR, Smith H (1998) Applied regression analysis. Wiley, New York

    Google Scholar 

  21. Elsheikh EAE (1998) Effects of salt on rhizobia and bradyrhizobia: a review. Ann Appl Biol 132:507–524

    Article  Google Scholar 

  22. FAO (2014) Statistics division. FAOSTAT Database—agricultural production

  23. Fehr WR, Caviness CE (1977) Stages of soybean development. Cooperative Extension Service, Agriculture and Home Economics Experiment Station-Iowa State University, Ames

    Google Scholar 

  24. Galloway JN, Dentener FJ, Capone DG, Boyer EW, Howarth RW, Seitzinger SP, Asner GP, Cleveland CC, Green PA, Holland EA, Karl DM, Michaels AF, Porter JH, Townsend AR, Voosmarty CJ (2004) Nitrogen cycles: past, present, and future. Biogeochemistry 70:153–226

    Article  CAS  Google Scholar 

  25. Hall AJ, Rebella CM, Ghersa CM, Culot JP (1992) Field-crop systems of the Pampas. In: Pearson CJ (ed) Ecosystems of the world. Elsevier, Amsterdam

    Google Scholar 

  26. Herridge DF (1982) Use of the ureide technique to describe the nitrogen economy of field-grown soybeans. Plant Physiol 70:7–11

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Herridge D, Peoples M, Boddey R (2008) Global inputs of biological nitrogen fixation in agricultural systems. Plant Soil 311:1–18

    Article  CAS  Google Scholar 

  28. Hungria M, Vargas MAT (2000) Environmental factors affecting N2 fixation in grain legumes in the tropics, with an emphasis on Brazil. Field Crop Res 65:151–164

    Article  Google Scholar 

  29. Hungria M, Franchini J, Campo R, Graham P (2005) The importance of nitrogen fixation to soybean cropping in South America. In: Werner D, Newton W (eds) Nitrogen fixation in agriculture, forestry, ecology, and the environment. Springer, Dordrecht, pp 25–42

    Google Scholar 

  30. Hungria M, Franchini JC, Campo RJ, Crispino CC, Moraes JZ, Sibaldelli RNR, Mendes IC, Arihara J (2006) Nitrogen nutrition of soybean in Brazil: contributions of biological N2 fixation and N fertilizer to grain yield. Can J Plant Sci 86:927–939

    Article  Google Scholar 

  31. Jakobsen I (1985) The role of phosphorus in nitrogen fixation by young pea plants (Pisum sativum). Physiol Plantarum 64:190–196

    Article  CAS  Google Scholar 

  32. King CA, Purcell LC (2001) Soybean nodule size and relationship to nitrogen fixation response to water deficit. Crop Sci 41:1099–1107

    Article  Google Scholar 

  33. Kumar P, Parry M, Mitchell R, Ahmad A and Abrol Y (2004) Photosynthesis and nitrogen-use efficiency. In: Foyer CH and Noctor G (eds). Photosynthetic nitrogen assimilation and associated carbon and respiratory metabolism, 23–34

  34. Nelson DW, Sommers LE (1973) Determination of total nitrogen in plant material. Agron J 65:109–112

    Article  CAS  Google Scholar 

  35. Parker MB, Harris HB (1977) Yield and leaf nitrogen of nodulating and non-nodulating soybeans as affected by nitrogen and molybdenum. Agron J 69:551–554

    Article  CAS  Google Scholar 

  36. Pauferro N, Guimarpes AP, Jantalia CP, Urquiaga S, Alves BJR, Boddey RM (2010) 15N natural abundance of biologically fixed N2 in soybean is controlled more by the Bradyrhizobium strain than by the variety of the host plant. Soil Biol Biochem 42:1694–1700

    Article  CAS  Google Scholar 

  37. Peltzer H and Peltzer N (2010) Modelo de simulación de fenología en soja. SI.FE.SOJA 2010. Ediciones INTA

  38. Pueppke S (2005) Nitrogen fixation by soybean in North America. In: Werner D, Newton W (eds) Nitrogen fixation in agriculture, forestry, ecology, and the environment. Springer, Dordrecht, pp 15–23

    Google Scholar 

  39. Reed JF, Cummings RW (1945) Soil reaction-glass electrode and colorimetric methods for determining ph values of soils. Soil Sci 1:97–105

    Article  Google Scholar 

  40. Ritchie JT (1972) Model for predicting evaporation from a row crop with incomplete cover. Water Resour Res 8:1204–1213

    Article  Google Scholar 

  41. Robertson GP, Vitousek PM (2009) Nitrogen in agriculture: balancing the cost of an essential resource. Ann Rev Environ Resour 34:97–125

    Article  Google Scholar 

  42. Rochester IJ, Peoples MB, Constable GA, Gault RR (1998) Faba beans and other legumes add nitrogen to irrigated cotton cropping systems. Aust J Exp Agric 38:253–260

    Article  Google Scholar 

  43. Rotaru V, Sinclair TR (2009) Interactive influence of phosphorus and iron on nitrogen fixation by soybean. Environ Exp Bot 66:94–99

    Article  CAS  Google Scholar 

  44. Sa TM, Israel DW (1995) Nitrogen assimilation in nitrogen-fixing soybean plants during phosphorus deficiency. Crop Sci 35:814–820

    Article  CAS  Google Scholar 

  45. SAGyP - INTA (1990) Atlas de suelos de la República Argentina. Escala 1:500.000 y1:1.000.000

  46. Sainz Rozas H, Echeverria HE, Angelini HP (2011) Niveles de carbono orgánico y pH en suelos agrícolas de las regiones pampeana y extrapampeana argentina. Ciencdel Suelo 29:29–37

    Google Scholar 

  47. Salvagiotti F, Cassman KG, Specht JE, Walters DT, Weiss A, Dobermann A (2008) Nitrogen uptake, fixation and response to fertilizer N in soybeans: a review. Field Crop Res 108:1–13

    Article  Google Scholar 

  48. Salvagiotti F, Specht JE, Cassman KG, Walters DT, Weiss A, Dobermann A (2009) Growth and nitrogen fixation in high-yielding soybean: impact of nitrogen fertilization. Agron J 101:958–970

    Article  CAS  Google Scholar 

  49. Serraj R, Sinclair T, Purcell L (1999) Symbiotic N2 fixation response to drought. J Exp Bot 50:143–155

    CAS  Google Scholar 

  50. Shearer G, Kohl DH (1986) N2 fixation in field settings: estimations based on natural 15N abundance. Aust J Plant Physiol 13:699–756

    CAS  Google Scholar 

  51. Sinclair TR, Horie T (1989) Leaf nitrogen, photosynthesis, and crop radiation use efficiency: a review. Crop Sci 29:90–98

    Article  Google Scholar 

  52. SIIA-MAGyP (2014) Sistema Integrado de Información Agropecuaria. Ministerio de Agricultura Ganadería y Pesca de la Nación www.minagri.gob.ar

  53. Smil V (1999) Nitrogen in crop production: an account of global flows. Glob Biogeochem Cycles 13:647–662

    Article  CAS  Google Scholar 

  54. Soares Novo MC, Tanaka RT, Mascarenhas HAA, Bortoletto N, Gallo PB, Alves Pereira JCVN, Teixeira Vargas AA (1999) Nitrogênio e potassio na fixação simbiotica de N2 por soja cultivada no inverno. Sci Agric 56:143–156

    Google Scholar 

  55. Sridhara S, Thimmegowda S, Prasad TG (1995) Effect of water regimes and moisture stress at different growth stages on nodule dynamics, nitrogenase activity and nitrogen fixation in soybean (Glycine max (L.) Merrill). J Agron Crop Sci 174:111–115

    Article  CAS  Google Scholar 

  56. Unkovich MJ, Pate JS (2000) An appraisal of recent field measurements of symbiotic N2 fixation by annual legumes. Field Crop Res 65:211–228

    Article  Google Scholar 

  57. Vessey JK, Waterer J (1992) In search of the mechanism of nitrate inhibition of nitrogenase activity in legume nodules: recent developments. Physiol Plantarum 84:171–176

    Article  CAS  Google Scholar 

  58. Walkley A, Black IA (1934) An examination of Degtjareff method for determining soil organic matter and a proposed modification of the chromic acid titration method. Soil Sci 37:29–37

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors want to greatly acknowledge valuable contribution in selecting and establishing experimental plots from Norma Arias (INTA Concepción del Uruguay), Gustavo Artaux (INTA Junín), Mirian Barraco (INTA Gral. Villegas), Cristian Brambilla (CREA), Juan Jose Calvo (INTA Junín), Julia Capurro (INTA Cañada de Gomez), Natalia Carrasco (INTA Barrow), Adolfo Carrizo (INTA Salta), Cesar Di Ciocco (Univ. Lujan), Juan Martín Enrico (INTA Oliveros), Hugo Fontanetto (INTA Rafaela), Francisco Fuentes (INTA Marcos Juárez), Pablo Glagovsky (INTA Gualeguaychú), Norma González (INTA Balcarce), Carlos López (INTA Rio I), Hernán Giacomelli (Estancia Runciman), Fernando Martínez (INTA Casilda), Fernando Mousegne (INTA San Antonio de Areco), Leon Murúa (INTA Jesús María), Eduardo Ocampo (INTA EL Colorado), Damian Pafundi (Rizobacter SA), Ricardo Pozzi (CREA), Guillermo Resch (INTA Huinca Renancó), Hector Sanchez (INTA Famailla), Eduardo Sa Pereira (INTA Cnel. Suarez), Diego Santos (INTA Paraná), Luis Ventimiglia (INTA 9 de Julio), Jose Luis Zorzin (AAPRESID), and Sebastian Zuil (INTA Reconquista)

Compliance with Ethical Standards

Funding

This study was funded by INTA (grants AEEV 1512 and PNCER 22472).

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Affiliations

Authors

Corresponding author

Correspondence to F. Salvagiotti.

Additional information

Responsible Editor: Euan K. James.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Collino, D.J., Salvagiotti, F., Perticari, A. et al. Biological nitrogen fixation in soybean in Argentina: relationships with crop, soil, and meteorological factors. Plant Soil 392, 239–252 (2015). https://doi.org/10.1007/s11104-015-2459-8

Download citation

Keywords

  • Soybean
  • BNF
  • Nitrogen
  • Argentina