Skip to main content

Advertisement

Log in

Local and regional-scale factors drive xerophytic shrub community dynamics on Mediterranean stabilized dunes

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Aims

The aim of this study was to analyse the main drivers of compositional and distributional changes of xerophytic shrub communities at different spatial scales. We also assess whether the ecological dynamics of these communities comply with the Clementsian and/or Gleasonian paradigms of community assembly.

Methods

We study the influence of environmental variables and human impacts at different scales on three xerophytic scrub communities growing on inland sand dunes. In 70 plots we sampled shrub cover, herb presence, soil characteristics and human disturbance. PCA and NMS were used to describe environmental and species variations. The effects of main drivers were assessed through Mantel tests, taking spatial structure into account. GAMs were used to model the scrub dynamics across environmental gradients.

Results

We found that local and regional environmental factors drive the patchy distribution of the xerophytic scrub communities. The gradient found from Stauracanthus genistoides to Ulex australis-dominated communities depends on nutrient availability, probably through species interactions, namely facilitation and competition. In turn, the gradient from S. genistoides to Juniperus navicularis-dominated communities follows an aridity gradient associated with human disturbance, namely agriculture.

Conclusions

We propose that the three studied scrub communities are the extremes of two successions. The S. genistoides to U. australis-dominated communities’ succession is driven by local edaphic factors, following Clementsian principles while the S. genistoides to Juniperus navicularis-dominated communities’ succession responds to local—disturbance—and regional—aridity—processes, following both Clementsian and Gleasonian principles. This implies that only dynamic management approaches directed to ensure a natural functioning of this landscape can be successful for their long-time preservation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • ALFA (2010) Checklist da Flora de Portugal (Continental, Açores e Madeira). http://www.uc.pt/jardimbotanico/projetos/inquire/Modulo3/rec_teoricos/Checklist_da_Flora_de_Portugal_31_08_2011.pdf Accessed 23 Sep 2013

  • APA 1992. Atlas do ambiente. Agência Portuguesa do Ambiente, Lisbon. http://sniamb.apambiente.pt/Home/Default.htm Accessed 1 Jul 2010

  • Armas C, Pugnaire FI (2005) Plant interactions govern population dynamics in a semi-arid plant community. J Ecol 93:978–989. doi:10.1111/j.1365-2745.2005.01033.x

    Article  Google Scholar 

  • Armas C, Pugnaire FI (2009) Ontogenetic shifts in interactions of two dominant shrub species in a semi-arid coastal sand dune system. J Veg Sci 20:535–546

    Article  Google Scholar 

  • Beyer HL (2004) Hawth’s analysis tools for ArcGIS. Available at http://www.spatialecology.com/htools

  • Borcard D, Legendre P, Avois-Jacquet C, Tuomisto H (2004) Dissecting the spatial structure of ecological data at multiple scales. Ecology 85:1826–1832

    Article  Google Scholar 

  • Caetano M, Nunes V, Nunes A (2009) CORINE land cover 2006 for continental Portugal, relatório técnico. Instituto Geográfico Português, Lisbon

    Google Scholar 

  • Carboni M, Santoro R, Acosta ATR (2011) Dealing with scarce data to understand how environmental gradients and propagule pressure shape fine-scale alien distribution patterns on coastal dunes. J Veg Sci 22:751–765. doi:10.1111/j.1654-1103.2011.01303.x

    Article  Google Scholar 

  • Castroviejo S (coord. gen.) (1986–2012) Flora iberica 1–8, 10–15, 17–18, 21. Real Jardín Botánico, CSIC, Madrid

  • Clements FE (1916) Plant succession: an analysis of the development of vegetation. (No. 242). Carnegie Institution of Washington

  • Costa JC, Monteiro-Henriques T, Neto C et al (2007) The application of the Habitats Directive in Portugal. Fitosociologia 44:23–28

    Google Scholar 

  • Desbarats AJ, Logan CE, Hinton MJ, Sharpe DR (2002) On the kriging of water table elevations using collateral information from a digital elevation model. J Hydrol 255:25–38

    Article  Google Scholar 

  • Díaz Barradas MC, Zunzunegui M, Tirado R et al (1999) Plant functional types and ecosystem function in Mediterranean shrubland. J Veg Sci 10:709–716

    Article  Google Scholar 

  • Dormann CF, Elith J, Bacher S et al (2012) Collinearity: a review of methods to deal with it and a simulation study evaluating their performance. Ecography (Cop) 35:27–46. doi:10.1111/j.1600-0587.2012.07348.x

    Google Scholar 

  • EC (2007) Interpretation manual of European Union Habitats. EUR27. European Commission, DG Environment, Brussels http://ec.europa.eu/environment/nature/legislation/habitatsdirective/docs/2007_07_im.pdf. Accessed 23 Out 2013

  • Espigares T, Peco B (1993) Mediterranean pasture dynamics: the role of germination. J Veg Sci 4:189–194

    Article  Google Scholar 

  • Fernández-Moya J, San Miguel-Ayanz A, Cañellas I, Gea-Izquierdo G (2011) Variability in Mediterranean annual grassland diversity driven by small-scale changes in fertility and radiation. Plant Ecol 212:865–877. doi:10.1007/s11258-010-9869-8

    Article  Google Scholar 

  • Franco JA (1971) Nova Flora de Portugal, continente e Açores 1–2. Sociedade Astória, Lisbon

    Google Scholar 

  • Franco JA, Afonso MLR (1994) Nova Flora de Portugal, continente e Açores. Escolar Editora, Lisboa

    Google Scholar 

  • García-Novo F (1977) The effects of fire on the vegetation of Doñana National Park, Spain. Symp. Environ. Consequences Fire Fuel Manag. Mediterr. Ecosyst. USDA For. Serv. Gen. Tech. Rep. WO-3 US Department of Agriculture California, pp 318–325

  • Gilbert ME (2007) The zonation of coastal dune plants in relation to sand burial, resource availability and physiological adaptation. Dissertation. Rhodes University: Grahamstown, South Africa

  • Gleason HA (1917) The structure and development of the plant association. Bull Torrey Bot Club 44(10):463–481

    Article  Google Scholar 

  • Gaucherand S, Lavorel S (2007) New method for rapid assessment of the functional composition of herbaceous plant communities. Austral Ecol 32:927–936. doi:10.1111/j.1442-9993.2007.01781.x

    Article  Google Scholar 

  • Goslee SC, Urban DL (2007) The ecodist Package for Dissimilarity-based Analysis of Ecological Data. J Stat Softw 22:1–19

    Google Scholar 

  • Graham MH (2003) Confronting Multicollinearity in Ecological. Ecology 84:2809–2815

    Article  Google Scholar 

  • Guisan A, Rahbek C (2011) SESAM - a new framework integrating macroecological and species distribution models for predicting spatio-temporal patterns of species assemblages. J Biogeogr 38:1433–1444. doi:10.1111/j.1365-2699.2011.02550.x

    Article  Google Scholar 

  • Hijmans RJ, Cameron SE, Parra JL et al (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25:1965–1978

    Article  Google Scholar 

  • Hortal J, Roura-Pascual N, Sanders NJ, Rahbek C (2010) Understanding (insect) species distributions across spatial scales. Ecography (Cop) 33:51–53. doi:10.1111/j.1600-0587.2009.06428.x

    Article  Google Scholar 

  • Hortal J, De Marco JP, Santos AMC, Diniz-Filho JAF (2012) Integrating biogeographical processes and local community assembly. J Biogeogr 39:627–628. doi:10.1111/j.1365-2699.2012.02684.x

    Article  Google Scholar 

  • Legendre P, Troussellier M (1988) Aquatic heterotrophic bacteria: modeling in the presence of spatial autocorrelation. Limonol Oceanogr 33:1055–1067

    Article  Google Scholar 

  • Legendre P, Lapointe F, Casgrain P (1994) Modeling brain evolution from behavior: A permutational regression approach. Evolution (N Y) 48:1487–1499

    Google Scholar 

  • Legendre P, Legendre L (1998) Numerical ecology, Second Eng. Elsevier Science BV, Amsterdam

    Google Scholar 

  • Lichstein JW (2007) Multiple regression on distance matrices: a multivariate spatial analysis tool. Plant Ecol 188:117–131. doi:10.1007/s11258-006-9126-3

    Article  Google Scholar 

  • LQARS (Laboratório Químico Agrícola Rebelo da Silva) (2006) Manual de Fertilização das Culturas. INIAP, Lisbon

    Google Scholar 

  • McCune B, Grace JB (2002) Analysis of ecological communities. MjM Software Design, Gleneden Beach

    Google Scholar 

  • Muñoz-Vallés S, Gallego Fernández J, Dellafiore C, Cambrollé J (2011) Effects on soil, microclimate and vegetation of the native-invasive Retama monosperma (L.) in coastal dunes. Plant Ecol 212:169–179. doi:10.1007/s11258-010-9812-z

    Article  Google Scholar 

  • Moser D, Dullinger S, Englisch T et al (2005) Environmental determinants of vascular plant species richness in the Austrian Alps. J Biogeogr 32:1117–1127. doi:10.1111/j.1365-2699.2005.01265.x

    Article  Google Scholar 

  • Muñoz-Reinoso JC, García Novo F (2005) Multiscale control of vegetation patterns: the case of Doñana (SW Spain). Landsc Ecol 20:51–61. doi:10.1007/s10980-004-0466-x

    Article  Google Scholar 

  • Neto C (2002) A flora e a vegetação do superdistrito Sadense (Portugal). Guineana 8:1–269

    Google Scholar 

  • Neto C, Capelo J, Costa JC (2004) Comunidades vegetais dos solos arenosos podzolizados do Sado e Costa da Galé. Uma interpretação fitossociológica dos dados paleoecológicos e geomorfológicos. Silva Lusit 12:256–262

    Google Scholar 

  • Olff H, Huisman J, Van Tooren BF (1993) Species dynamics and nutrient accumulation during early primary succession in coastal sand dunes. J Ecol 81:693–706

    Article  Google Scholar 

  • Pardo C, Cubas P, Tahiri H (2008) Genetic variation and phylogeography of Stauracanthus (Fabaceae, Genisteae) from the Iberian Peninsula and northern Morocco assessed by chloroplast microsatellite (cpSSR) markers. Am J Bot 95:98–109

    Article  PubMed  Google Scholar 

  • Pérez Latorre AV, Nieto Caldera JM, Cabezudo B (1993) Contribución al conocimiento de la vegetación de Andalucía. II. Los alcornocales. Acta Bot Malacit 18:223–258

    Google Scholar 

  • Pickett STA, Collins SL, Armesto JJ (1987) Models, mechanisms and pathways of succession. Bot Rev 53:335–371. doi:10.1007/BF02858321

    Article  Google Scholar 

  • Prach K, Walker LR (2011) Four opportunities for studies of ecological succession. Trends Ecol Evol 26:119–123. doi:10.1016/j.tree.2010.12.007

    Article  PubMed  Google Scholar 

  • R Development Core Team (2011) R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. <http://www.R-project.org>

  • Rajaniemi TK, Allison VJ (2009) Abiotic conditions and plant cover differentially affect microbial biomass and community composition on dune gradients. Soil Biol Biochem 41:102–109. doi:10.1016/j.soilbio.2008.10.001

    Article  CAS  Google Scholar 

  • SNIRH (Sistema Nacional de Informação de Recursos Hídricos-Portugal) 2009. http://snirh.pt/. Accessed 31 Jan 2013

  • Tilman D (1985) The Resource-ratio hypothesis of plant succession. Am Nat 125:827–852

    Article  Google Scholar 

  • Tobler M (2008) Divergence in trophic ecology characterizes colonization of extreme habitats. Biol J Linn Soc 95:517–528. doi:10.1111/j.1095-8312.2008.01063.x

    Article  Google Scholar 

  • Wood SN (2006) Generalized additive models: An introduction with R. Chapman and Hall/CRC, Boca Raton

    Google Scholar 

  • Zunzunegui M, Barradas MCD, Ain-Lhout F et al (2005) To live or to survive in Doñana dunes: adaptive responses of woody species under a Mediterranean climate. Plant Soil 273:77–89. doi:10.1007/s11104-004-6806-4

    Article  CAS  Google Scholar 

  • Zuur AF, Leno EN, Elphick CS (2010) A protocol for data exploration to avoid common statistical problems. Methods Ecol Evol 1:3–14. doi:10.1111/j.2041-210X.2009.00001.x

    Article  Google Scholar 

Download references

Acknowledgments

We thank to Herdades da Comporta, Montalvo and Porches, Campo de Tiro de Alcochete and Companhia das Lezírias for the field sites, and to Portuguese DGT – Direção Geral do Território for the digital orthophoto supply. We thank to two anonymous reviewers for valuable comments and advice. This work was partly funded by the Portuguese FCT project EXPL/BIA-BIC/2311/2013. SC was supported by the FCT PhD grant SFRH/BD/65659/2009, MP by the FCT PhD grant SFRH/BD/28974/2006, and JH by a Spanish DGCyT Ramón y Cajal grant.

Ethical statement

The authors declare that:

  1. i.

    the manuscript has not been submitted to more than one journal for simultaneous consideration,

  2. ii.

    the manuscript has not been published previously, partly or in full

  3. iii.

    no data have been fabricated or manipulated

  4. iv.

    no data, text, or theories by others are presented as if they were the author’s own

  5. v.

    consent to submit has been received explicitly from all co-authors, as well as from the responsible authorities, at the institute/organization where the work has been carried out, before the work is submitted.

  6. vi.

    authors whose names appear on the submission have contributed sufficiently to the scientific work and therefore share collective responsibility and accountability for the results

  7. vii.

    they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergio Chozas.

Additional information

Responsible Editor: Duncan D. Cameron.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 75 kb)

ESM 2

(DOCX 136 kb)

ESM 3

(DOCX 81 kb)

ESM 4

(DOCX 23 kb)

ESM 5

(DOCX 22 kb)

ESM 6

(DOCX 22 kb)

ESM 7

(DOCX 28 kb)

ESM 8

(DOCX 22 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chozas, S., Correia, O., Porto, M. et al. Local and regional-scale factors drive xerophytic shrub community dynamics on Mediterranean stabilized dunes. Plant Soil 391, 413–426 (2015). https://doi.org/10.1007/s11104-015-2439-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-015-2439-z

Keywords

Navigation