Plant and Soil

, Volume 391, Issue 1–2, pp 195–205 | Cite as

The concentration of selenium matters: a field study on mercury accumulation in rice by selenite treatment in qingzhen, Guizhou, China

  • Yu-Feng Li
  • Jiating Zhao
  • Yunyun Li
  • Hanjun Li
  • Junfang Zhang
  • Bai Li
  • Yuxi Gao
  • Chunying Chen
  • Manyi Luo
  • Rui Huang
  • Jun Li
Regular Article



The consumption of rice grain produced in mercury (Hg) contaminated soil was identified as a major route of dietary Hg exposure. The aims were 1) to determine the most suitable concentration of Se that can lead to least Hg accumulation in rice grain in real Hg contaminated paddy field in Qingzhen, and 2) to elucidate the possible mechanism of the protection against the phytotoxicity of Hg in rice by Se.


Rice plants were treated with different concentrations (0, 0.01, 0.1, 0.5, 1 and 5 μg/mL) of sodium selenite in a real paddy field in Qingzhen, Guizhou, China. The concentrations of Hg and Se in soil, stream water, rice tissues, and the seed setting rate (SSR) and thousand seed weight (TSW) were checked. The distribution and chemical forms of Hg and Se in rice root were studied by XRF and XAS.


Treating the rice plants with 0.5 μg/mL of sodium selenite achieved the lowest Hg accumulation in rice grain while the highest SSR and TSW. In rice root, XRF found decreased Hg uptake, and XAS found Hg-Se complexes were formed. These findings, together with the formation of biological barriers like iron plaque, could explain the decreased accumulation of Hg in rice grain at Se levels below 0.5 μg/mL. Se concentrations over 0.5 μg/mL led to increased Hg accumulation and decreased SSR and TSW, which were ascribed to the significantly increased Se accumulation in rice grain.


This field study suggest that treatment with appropriate level of Se (0.5 μg/mL in this study) is an efficient way to reduce Hg accumulation in rice and increase rice yield and quality, thereafter to protect the health of the rice-dependent populations in Hg-contaminated area.


Rice Mercury Selenium XRF XAS Seed setting rate Thousand seed weight 

Supplementary material

11104_2015_2418_MOESM1_ESM.docx (34 kb)
S 1Analytical Methods and Quality Control (DOCX 33 kb)
11104_2015_2418_MOESM2_ESM.docx (33 kb)
S 2XRF beamline in SSRF (DOCX 33 kb)
11104_2015_2418_MOESM3_ESM.docx (33 kb)
S 3Hg Speciation by XAS (DOCX 33 kb)
11104_2015_2418_MOESM4_ESM.docx (86 kb)
Figure S1The normalized XANES spectra of rice roots and the standard compounds. (DOCX 85 kb)
11104_2015_2418_MOESM5_ESM.docx (177 kb)
Figure S2The LCF fitting of the XANES spectra. (a) Fitting the spectrum of the control rice root; (b) Fitting the spectrum of Se treated rice root. (DOCX 176 kb)


  1. Bindraban PS, Hengsdijk H, Cao W, Shi Q, Thiyagarajan TM, Van Der Krogt W, Wardana IP (2006) Transforming inundated rice cultivation. Int J Water Res Dev 22:87–100. doi:10.1080/07900620500405338 CrossRefGoogle Scholar
  2. Bjerregaard P, Christensen A (2012) Selenium reduces the retention of methyl mercury in the brown shrimp Crangon crangon. Environ Sci Technol 46:6324–6329CrossRefPubMedGoogle Scholar
  3. Carey A-M et al (2012) Grain accumulation of selenium species in rice (Oryza sativa L.). Environ Sci Technol 46:5557–5564CrossRefPubMedGoogle Scholar
  4. Carrasco-Gil S et al (2011) Complexation of Hg with phytochelatins is important for plant Hg tolerance. Plant Cell Environ 34:778–791. doi:10.1111/j.1365-3040.2011.02281.x CrossRefPubMedGoogle Scholar
  5. Chen C et al (2006) The roles of serum selenium and selenoproteins on mercury toxicity in environmental and occupational exposure. Environ Health Perspect 114:297–301CrossRefPubMedCentralPubMedGoogle Scholar
  6. Chen L, Yang F, Xu J, Hu Y, Hu Q, Zhang Y, Pan G (2002) Determination of selenium concentration of rice in China and effect of fertilization of selenite and selenate on selenium content of rice. J Agric Food Chem 50:5128–5130. doi:10.1021/jf0201374 CrossRefPubMedGoogle Scholar
  7. Chen Z, Zhu Y-G, Liu W-J, Meharg AA (2005) Direct evidence showing the effect of root surface iron plaque on arsenite and arsenate uptake into rice (Oryza sativa) roots. New Phytol 165:91–97. doi:10.1111/j.1469-8137.2004.01241.x CrossRefPubMedGoogle Scholar
  8. Cheng J, Yuan T, Wang W, Jia J, Lin X, Qu L, Ding Z (2006) Mercury pollution in two typical areas in Guizhou Province, China and its neurotoxic effects in the brains of rats fed with local polluted rice. Environ Geochem Health 28:499–507CrossRefPubMedGoogle Scholar
  9. Chiasson-Gould SA, Blais JM, Poulain AJ (2014) Dissolved organic matter kinetically controls mercury bioavailability to bacteria. Environ Sci Technol 48:3153–3161. doi:10.1021/es4038484 CrossRefPubMedGoogle Scholar
  10. Chinese Ministry of Health (2005) Pollutants limit in food (GB2762-2005). China Stadard Press, BeijingGoogle Scholar
  11. Clarkson TW, Magos L (2006) The toxicology of mercury and its chemical compounds. Crit Rev Toxicol 36:609–662. doi:10.1080/10408440600845619 CrossRefPubMedGoogle Scholar
  12. Environmental Quality Standard for Soils (GB15618-1995) (1995) Ministry of environmental protection of the People’s Republic of ChinaGoogle Scholar
  13. Esteban E, Deza M, Zornoza P (2013) Kinetics of mercury uptake by oilseed rape and white lupin: influence of Mn and Cu. Acta Physiol Plant 35:2339–2344. doi:10.1007/s11738-013-1253-6 CrossRefGoogle Scholar
  14. Fang Y, Zhang Y, Catron B, Chan Q, Hu Q, Caruso JA (2009) Identification of selenium compounds using HPLC-ICPMS and nano-ESI-MS in selenium-enriched rice via foliar application. J Anal At Spectrom 24:1657–1664. doi:10.1039/B912538H CrossRefGoogle Scholar
  15. Feng X et al (2008) Human exposure to methylmercury through rice Intake in mercury mining areas, Guizhou province, China. Environ Sci Technol 42:326–332. doi:10.1021/es071948x CrossRefPubMedGoogle Scholar
  16. Gailer J et al (2000) Structural basis of the antagonism between inorganic mercury and selenium in mammals. Chem Res Toxicol 13:1135–1142CrossRefPubMedGoogle Scholar
  17. Guallar E et al (2002) Mercury, fish oils, and the risk of myocardial infarction. N Engl J Med 347:1747–1754. doi:10.1056/NEJMoa020157 CrossRefPubMedGoogle Scholar
  18. Horvat M et al (2003) Total mercury, methylmercury and selenium in mercury polluted areas in the province Guizhou. China Sci Total Environ 304:231–256, CrossRefGoogle Scholar
  19. Hu Y, Y-z H, Y-c H, Y-x L, J-h L (2013) Effect of selenium on the uptake and translocation of manganese, iron, phosphorus and selenium in rice (Oryza sativa L.). Environ Sci 34:4119–4125Google Scholar
  20. Koeman JH, Peeters WHM, Koudstaal-Hol CHM, Tjioe PS, De Goeij JJM (1973) Mercury-selenium correlations in marine mammals. Nature 245:385–386CrossRefPubMedGoogle Scholar
  21. Kosta L, Byrne AR, Zelenko V (1975) Correlation between selenium and mercury in man following exposure to inorganic mercury. Nature 254:238–239CrossRefPubMedGoogle Scholar
  22. Lai L (2008) Remediation of mercury-contaminated soils by using low temperature thermal desorption in qingzhen, guizhou master thesis, Guizhou Normal UniversityGoogle Scholar
  23. Li S et al (2013) Natural variation in PTB1 regulates rice seed setting rate by controlling pollen tube growth. Nat Commun 4:Article number: 2793 doi:10.1038/ncomms3793
  24. Li Y-F et al (2006) Elimination efficiency of different reagents for the memory effect of mercury using ICP-MS. J Anal At Spectrom 21:94–96. doi:10.1039/b511367a CrossRefGoogle Scholar
  25. Li Y-F et al (2007) Simultaneous speciation of selenium and mercury in human urine samples from long-term mercury-exposed populations with supplementation of selenium-enriched yeast by HPLC-ICP-MS. J Anal At Spectrom 22:925–930CrossRefGoogle Scholar
  26. Li Y-F et al (2012) Organic selenium supplementation increases mercury excretion and decreases oxidative damage in long-term mercury-exposed residents from Wanshan, China. Environ Sci Technol 46:11313–11318CrossRefPubMedGoogle Scholar
  27. Li Y-F, Wang X, Wang L, Li B, Gao Y, Chen C (2010) Direct quantitative speciation of selenium in selenium-enriched yeast and yeast-based products by X-ray absorption spectroscopy confirmed by HPLC-ICP-MS. J Anal At Spectrom 25:426–430CrossRefGoogle Scholar
  28. Li Y, Zhao J, Gao Y, Li Y-F, Li B, Zhao Y, Chai Z (2014) Effeects of iron plaque and selenium on the absorption and translocation of inorganic merucry and methylmercury in rice (Oryza sativa L.). Asian J Ecotoxicol 9:972–977Google Scholar
  29. Lin K (2009) Studies on the leaching efficacy of heavily hg polluted paddy soil. Guizhou UniversityGoogle Scholar
  30. Long Y, Liu S, Xiong J, Yang J, Li K (1994) Study on the removal efficiency of mercury in paddy soil using Boehmeria nivea (L.) Gaudich. Agro-Environ Protect 13:30–33Google Scholar
  31. Matsuyama A et al (2004) Distribution of methylmercury in an area polluted by mercury containing wastewater from an organic chemical factory in China. Bull Environ Contam Toxicol 73:846–852CrossRefPubMedGoogle Scholar
  32. Matsuyama A, Taniguchi Y, Yasuda Y (2009) Relationships between leaching of methylmercury from the soil and the basic characteristics of alkali soil polluted by mercury in Guizhou China. Bull Environ Contam Toxicol 82:363–366CrossRefPubMedGoogle Scholar
  33. Matsuyama A et al (2005) Relationship between leached total mercury and leached methylmercury from soil polluted by mercury in wastewater from an organic chemical factory in the People’s Republic of China. Bull Environ Contam Toxicol 75:1234–1240CrossRefPubMedGoogle Scholar
  34. McNear DH, Afton SE, Caruso JA (2012) Exploring the structural basis for selenium/mercury antagonism in Allium fistulosum. Metallomics 4:267–276CrossRefPubMedGoogle Scholar
  35. Meng B et al (2010) Distribution patterns of inorganic mercury and methylmercury in tissues of rice (Oryza sativa L.) plants and possible bioaccumulation pathways. J Agric Food Chem 58:4951–4958CrossRefPubMedGoogle Scholar
  36. Minstry of Environmental Protection (2002) Environmental standard for surface water (GB3838-2002). China Envrionmental Science Press, BeijingGoogle Scholar
  37. Mounicou S, Shah M, Meija J, Caruso JA, Vonderheide AP, Shann J (2006) Localization and speciation of selenium and mercury in Brassica juncea-implications for Se-Hg antagonism. J Anal At Spectrom 21:404–412. doi:10.1039/B514954A CrossRefGoogle Scholar
  38. Patra M, Sharma A (2000) Mercury toxicity in plants. Bot Rev 66:379–422. doi:10.1007/BF02868923 CrossRefGoogle Scholar
  39. Peng X, Liu F, Wang W-X, Ye Z (2012) Reducing total mercury and methylmercury accumulation in rice grains through water management and deliberate selection of rice cultivars. Environ Pollut 162:202–208. doi:10.1016/j.envpol.2011.11.024 CrossRefPubMedGoogle Scholar
  40. Perumalla CJ, Peterson CA (1986) Deposition of Casparian bands and suberin lamellae in the exodermis and endodermis of young corn and onion roots. Can J Bot 64:1873–1878. doi:10.1139/b86-248 CrossRefGoogle Scholar
  41. Plant JA, Kinniburgh DG, Smedley PL, Fordyce FM, Klinck BA (2003) Arsenic and selenium. In: Turekian HDHK (ed) Treatise on geochemistry. Pergamon, Oxford, pp 17–66. doi:10.1016/B0-08-043751-6/09047-2 CrossRefGoogle Scholar
  42. Qin S, Fan C, Sun R (2009) Characteristic, problems and utilization countermeasures of soil resource in Guizhou. Guizhou Agric Sci 37:94–98Google Scholar
  43. Qiu R, Zhang J, Dong Z, Yu Z, Feng H, Lai L (2014) Low-temperature thermal desorption of farmland soil contaminated by mercury. Chin Environ Sci Technol 37:48–52Google Scholar
  44. Qu L (1999) Mercury pollution caused by guizhou organic chemical factory in environment. J Guizhou Norm Univ 17:25–28Google Scholar
  45. Ralston NVC, Raymond LJ (2010) Dietary selenium’s protective effects against methylmercury toxicity. Toxicology 278:112–123CrossRefPubMedGoogle Scholar
  46. Ressler T, Wong J, Roos J, Smith IL (2000) Quantitative speciation of Mn-bearing particulates emitted from autos burning (methylcyclopentadienyl)manganese tricarbonyl-added gasolines using XANES spectroscopy. Environ Sci Technol 34:950–958. doi:10.1021/es990787x CrossRefGoogle Scholar
  47. Seppanen K, Kantola M, Laatikainen R, Nyyssonen K, Valkonen VP, Kaarlopp V, Salonen JT (2000) Effect of supplementation with organic selenium on mercury status as measured by mercury in pubic hair. J Trace Elem Med Biol 14:84–87CrossRefPubMedGoogle Scholar
  48. Tan J (1996) Chronic keshan disease and environmental elements of life. Chinese Medicine Science and Technology Press, BeijingGoogle Scholar
  49. Tan J, Zhu W, Wang W, Li R, Hou S, Wang D, Yang L (2002) Selenium in soil and endemic diseases in China. Sci Total Environ 284:227–235. doi:10.1016/S0048-9697(01)00889-0 CrossRefPubMedGoogle Scholar
  50. Wang J, Feng X, Anderson CWN, Xing Y, Shang L (2012) Remediation of mercury contaminated sites-a review. J Hazard Mater 221–222:1–18PubMedGoogle Scholar
  51. Wang S, Wang R, Liu Y, Liu J, Song D, Huang Q, Du Z (1990) Studies on methylmercury pollution in Qingzhen district of Guizhou Province. Sci Geogr Sin 10:168–176CrossRefGoogle Scholar
  52. Wang X et al (2014a) Radial oxygen loss has different effects on the accumulation of total mercury and methylmercury in rice. Plant Soil 385:343–355. doi:10.1007/s11104-014-2239-x CrossRefGoogle Scholar
  53. Wang X, Tam NF-Y, Fu S, Ametkhan A, Ouyang Y, Ye Z (2014b) Selenium addition alters mercury uptake, bioavailability in the rhizosphere and root anatomy of rice (Oryza sativa). Ann Bot 114:271–278. doi:10.1093/aob/mcu117 CrossRefPubMedGoogle Scholar
  54. Wang X, Ye Z, Li B, Huang L, Meng M, Shi J, Jiang G (2014c) Growing rice aerobically markedly decreases mercury accumulation by reducing both Hg bioavailability and the production of MeHg. Environ Sci Technol 48:1878–1885. doi:10.1021/es4038929 CrossRefPubMedGoogle Scholar
  55. Wang Y-D, Wang X, Wong Y-S (2013) Generation of selenium-enriched rice with enhanced grain yield, selenium content and bioavailability through fertilisation with selenite. Food Chem 141:2385–2393. doi:10.1016/j.foodchem.2013.05.095 CrossRefPubMedGoogle Scholar
  56. Xiong J (1985) Effect of mercury-containing waste water from an organic chemical plant on the environmetal quality of local farmland. Guizhou People’s Publishing House, GuiyangGoogle Scholar
  57. Yasuda Y et al (2004) Mercury distribution in farmlands downstream from an acetaldehyde producing chemical company in Qingzhen city, Guizhou, People’s Republic of China. Bull Environ Contam Toxicol 72:445–451CrossRefPubMedGoogle Scholar
  58. Yathavakilla S, Caruso J (2007) A study of Se-Hg antagonism in Glycine max (soybean) roots by size exclusion and reversed phase HPLC–ICPMS. Anal Bioanal Chem 389:715–723. doi:10.1007/s00216-007-1458-x CrossRefPubMedGoogle Scholar
  59. Zhang H et al (2012) Selenium in soil inhibits mercury uptake and translocation in rice (Oryza sativa L.). Environ Sci Technol 46:10040–10046PubMedGoogle Scholar
  60. Zhang J, Qu L, Feng X, Zhang W, Guo Y, Lin K, Li M (2008) Farmland mercury contamination in the vicinity of an organic chemical factory in Guizhou, China. Chin J Geochem 27:424–430CrossRefGoogle Scholar
  61. Zhao J et al (2013) Selenium inhibits the phytotoxicity of mercury in garlic (Allium Sativum). Environ Res 125:75–81CrossRefPubMedGoogle Scholar
  62. Zhao J, Li Y, Gao Y, Li B, Li Y-F, Zhao Y, Chai Z (2014a) Study on mercury resistant wild plants growing in mercury mine area of Wanshan District, Guizhou Province. Asian J Ecotoxicol 9:881–887Google Scholar
  63. Zhao J et al (2014b) Selenium modulates mercury uptake and distribution in rice (Oryza sativa L.), in correlation with mercury species and exposure level. Metallomics 6:1951–1957CrossRefPubMedGoogle Scholar
  64. Zhou X-b, Yu S-h, Wang W-h, Chang H, Zhou Y-X (2014) Effects of application of selenium in soil on the formation of root surface iron plaque and mercury uptake by rice plant. J Southwest Univ 36:103–107Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Yu-Feng Li
    • 1
  • Jiating Zhao
    • 1
  • Yunyun Li
    • 1
  • Hanjun Li
    • 1
  • Junfang Zhang
    • 2
  • Bai Li
    • 1
  • Yuxi Gao
    • 1
  • Chunying Chen
    • 3
  • Manyi Luo
    • 4
  • Rui Huang
    • 4
  • Jun Li
    • 4
  1. 1.State Environmental Protection Engineering Center for Mercury Pollution Prevention and Control, and CAS Key Laboratory for Biomedical Effects of Nanomateriasl and Nanosafety, Institute of High Energy PhysicsChinese Academy of SciencesBeijingChina
  2. 2.Guizhou Institute of Environmental Science and DesigningGuiyangChina
  3. 3.National Center for Nanoscience and TechnologyBeijingChina
  4. 4.Beijing National Day SchoolBeijingChina

Personalised recommendations