Skip to main content
Log in

Effects of cultivars and water management on cadmium accumulation in water spinach (Ipomoea aquatica Forsk.)

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Background and aims

Water spinach is a common leafy vegetable in Asia, with a strong ability to accumulate cadmium (Cd) in its edible parts. The aims of this study were to investigate the effects of cultivar variation and water management on Cd accumulation in this plant.

Methods

Three experiments were conducted: a soil pot trial with 32 cultivars, a rhizobox trial with 4 cultivars under flooded and non-flooded conditions and an uptake kinetics trial with 2 cultivars.

Results

There were significant differences in Cd accumulation between the different cultivars, and Cd concentrations in shoots were significantly lower in the flooded (0.25–1.4, mean 0.90 mg kg−1 DW) than in the non-flooded (1.9–4.7, 3.2 mg kg−1) treatments. Cultivars with a low Cd accumulation had a lower Cd bioavailability and mobility in the rhizosphere soil, higher Cd combined with Fe plaque on roots, lower Cd uptake capacity by roots, and lower Cd transfer factors than those with a high Cd accumulation.

Conclusions

Water spinach grown under anaerobic conditions effectively reduces Cd accumulation in edible parts. Low Cd-accumulating cultivars tend to possess a high ability to reduce Cd bioavailability in rhizosphere soil, as well as decrease Cd uptake, and translocation from root to shoot.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  • Arao T, Ishikawa S (2006) Genotypic differences in cadmium concentration and distribution of soybeans and rice. Jarq-Japn Agric Res Q 40:21–30

    Article  CAS  Google Scholar 

  • Arao T, Ae N, Sugiyama M, Takahashi M (2003) Genotypic differences in cadmium uptake and distribution in soybeans. Plant Soil 251:247–253

    Article  CAS  Google Scholar 

  • Arao T, Kawasaki A, Baba K, Mori S, Matsumoto S (2009) Effects of water management on cadmium and arsenic accumulation and dimethylarsinic acid concentrations in Japanese rice. Environ Sci Technol 43:9361–9367

    Article  CAS  PubMed  Google Scholar 

  • Begg MCB, Kirk GJD, Mackenzie AF, Neue HU (1994) Root-induced iron oxidation and pH changes in the lowland rice rhizosphere. New Phytol 128:469–477

    Article  CAS  Google Scholar 

  • Chan DY, Hale BA (2004) Differential accumulation of Cd in durum wheat cultivars: uptake and retranslocation as sources of variation. J Exp Bot 55:2571–2579

    Article  CAS  PubMed  Google Scholar 

  • Chang AC, Page AL, Foster KW, Jones TE (1982) A comparison of cadmium and zinc accumulation by four cultivars of barley grown in sludge-amended soils. J Environ Qual 11:409–412

    Article  CAS  Google Scholar 

  • Chao DY, Silva A, Baxter I, Huang YS, Nordborg M, Danku J, Lahner B, Yakubova E, Salt DE (2012) Genome-wide association studies identify Heavy Metal ATPase3 as the primary determinant of natural variation in leaf cadmium in Arabidopsis thaliana. Plos Genet 8(9):e1002923

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chen F, Dong J, Wang F, Wu F, Zhang G, Li G, Chen Z, Chen J, Wei K (2007) Identification of barley genotypes with low grain Cd accumulation and its interaction with four microelements. Chemosphere 67:2082–2088

    Article  CAS  PubMed  Google Scholar 

  • Cheng H, Chen DT, Tam NFY, Chen GZ, Li SY, Ye ZH (2012) Interactions among Fe2+, S2−, and Zn2+ tolerance, root anatomy, and radial oxygen loss in mangrove plants. J Exp Bot 63(7):2619–2630

    Article  CAS  PubMed  Google Scholar 

  • Cheng H, Wang MY, Wong MH, Ye ZH (2014) Does radial oxygen loss and iron plaque formation on roots alter Cd and Pb uptake and distribution in rice plant tissues? Plant Soil 375:137–148

    Article  CAS  Google Scholar 

  • Clemens S, Palmgren MG, Kramer U (2002) A long way ahead: understanding and engineering plant metal accumulation. Trends Plant Sci 7:309–315

    Article  CAS  PubMed  Google Scholar 

  • Clemens S, Aarts MGM, Thomine S, Verbruggen N (2013) Plant science: the key to preventing slow cadmium poisoning. Trends Plant Sci 18(2):92–99

    Article  CAS  PubMed  Google Scholar 

  • Colmer TD (2003) Aerenchyma and an inducible barrier to radial oxygen loss facilitate root aeration in upland, paddy and deepwater rice (Oryza sativa L.). Ann Bot 91:301–309

    Article  CAS  PubMed  Google Scholar 

  • Deng H, Ye ZH, Wong MH (2009) Lead, zinc and iron (Fe2+) tolerance in wetland plants and relation to root anatomy and spatial pattern of ROL. Environ Exp Bot 65:353–362

    Article  CAS  Google Scholar 

  • Dunbar KR, McLaughlin MJ, Reid RJ (2003) The uptake and partitioning of cadmium in two cultivars of potato (Solanum tuberosum L.). J Exp Bot 54:349–354

    Article  CAS  PubMed  Google Scholar 

  • Esteban E, Moreno E, Peñalosa J, Cabrero JI, Millán R, Zornoza P (2008) Short and long-term uptake of Hg in white lupin plants: kinetics and stress indicators. Environ Exp Bot 62:316–322

    Article  CAS  Google Scholar 

  • Fitz WJ, Wenzel WW (2002) Arsenic transformation in the soil-rhizosphere-plant system: fundamentals and potential application to phytoremediation. J Biotechnol 99:259–278

    Article  CAS  PubMed  Google Scholar 

  • Florijn PJ, Van Beusichem ML (1993) Cadmium distribution in maize inbred lines: effects of pH and level of Cd supply. Plant Soil 153:79–84

    Article  CAS  Google Scholar 

  • Gleason SM, Ewel KC, Hue N (2003) Soil redox conditions and plant-soil relationships in a Micronesian mangrove forest. Estuar Coast Shelf Sci 56:1065–1074

    Article  CAS  Google Scholar 

  • Göthberg A, Greger M, Bengtsson BE (2002) Accumulation of heavy metals in water spinach (Ipomoea aquatica) cultivated in the Bangkok region, Thailand. Environ Toxicol Chem 21(9):1934–1939

    Article  PubMed  Google Scholar 

  • Grant CA, Clarke JM, Duguid S, Chaney RL (2008) Selection and breeding of plant cultivars to minimize cadmium accumulation. Sci Total Environ 390:301–310

    Article  CAS  PubMed  Google Scholar 

  • Greger M, Landberg T (2008) Role of rhizosphere mechanisms in Cd uptake by various wheat cultivars. Plant Soil 312:195–205

    Article  CAS  Google Scholar 

  • Hang XS, Wang HY, Zhou JM, Ma CL, Du CW, Chen XQ (2009) Risk assessment of potentially toxic element pollution in soils and rice (Oryza sativa) in a typical area of the Yangtze River Delta. Environ Pollut 157:2542–2549

    Article  CAS  PubMed  Google Scholar 

  • Harrison HA (1986) Carrot response to sludge application and bed type. J Am Soc Hortic Sci 11:211–215

    Google Scholar 

  • Hart JJ, Welch RM, Norvell WA, Sullivan LA, Kochian LV (1998) Characterization of cadmium binding, uptake, and translocation in intact seedlings of bread and durum wheat cultivars. Plant Physiol 116:1413–1420

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hinesly TD, Alexander DE, Ziegler EL, Barrett GL (1978) Zinc and Cd accumulation by corn inbreds grown on sludge amended soil. Agron J 70:425–428

    Article  CAS  Google Scholar 

  • Hseu ZY, Jien SH, Wang SH, Deng HW (2013) Using EDDS and NTA for enhanced phytoextraction of Cd by water spinach. J Environ Manag 117:58–64

    Article  CAS  Google Scholar 

  • Huang SS, Liao QL, Hua M, Wu XM, Bi KS, Yan CY, Chen B, Zhang XY (2007) Survey of heavy metal pollution and assessment of agricultural soil in Yang zhong district, Jiangsu Province, China. Chemosphere 67:2148–2155

    Article  CAS  PubMed  Google Scholar 

  • Ishikawa S, Suzui N, Ito-Tanabata S, Ishii S, Igura M, Abe T, Kuramata M, Kawachi N, Fujimaki S (2011) Real-time imaging and analysis of differences in cadmium dynamics in rice cultivars (Oryza sativa) using positron-emitting 107Cd tracer. BMC Plant Biol 11:172

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ishikawa S, Ishimaru Y, Igura M, Kuramata M, Abe T, Senoura T, Hase Y, Arao T, Nishizawa NK, Nakanishi H (2012) Ion-beam irradiation, gene identification, and marker-assisted breeding in the development of low-cadmium rice. Proc Natl Acad Sci U S A 109(47):19166–19171

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Jensen CR, Luxmoore RJ, Van-Gundy SD, Stolzy LH (1969) Root air space measurements by a pycnometer method. Agron J 61:474–475

    Article  Google Scholar 

  • Kabala C, Singh BR (2001) Fractionation and mobility of copper, lead and zinc in soil profiles in the vicinity of a copper smelter. J Environ Qual 30:485–495

    Article  CAS  PubMed  Google Scholar 

  • Keon NE, Swartz CH, Brabander DJ, Harvey C, Hemond HF (2001) Validation of an arsenic sequential extraction method for evaluating mobility in sediments. Environ Sci Technol 35:2778–2784

    Article  CAS  PubMed  Google Scholar 

  • Kirk GJD, Bajita JB (1995) Root-induced oxidation, pH changes and zinc solubilization in the rhizosphere of lowland rice. New Phytol 131:129–137

    Article  CAS  Google Scholar 

  • Kludze HK, Delaune RD, Patrick WH (1993) Aerenchyma formation and methane and oxygen exchange in rice. Soil Sci Soc Am J 51:368–391

    Google Scholar 

  • Li B, Wang X, Qi XL, Huang L, Ye ZH (2012) Identification of rice cultivars with low brown rice mixed cadmium and lead contents and their interactions with the micronutrients iron, zinc, nickel and manganese. J Environ Sci 24:1790–1798

    Article  CAS  Google Scholar 

  • Liu J, Qian M, Cai G, Yang J, Zhu Q (2007) Uptake and translocation of Cd in different rice cultivars and the relation with Cd accumulation in rice grain. J Hazard Mater 143:443–447

    Article  CAS  PubMed  Google Scholar 

  • Liu JC, Yan CL, Zhang RF, Lu HL, Qin GQ (2008) Speciation changes of cadmium in mangrove (Kandelia candel (L.)) rhizosphere sediments. Bull Environ Contam Toxicol 80:231–236

    Article  CAS  Google Scholar 

  • Liu JG, Cao CX, Wong MH, Zhang ZJ, Chai YH (2010) Variations between rice cultivars in iron and manganese plaque on roots and the relation with plant cadmium uptake. J Environ Sci 22:1067–1072

    Article  CAS  Google Scholar 

  • Lux A, Martinka M, Vaculík M, White PJ (2011) Root responses to cadmium in the rhizosphere: a review. J Exp Bot 62(1):21–37

    Article  CAS  PubMed  Google Scholar 

  • Macfie SM, Crowder AA (1987) Soil factors influencing ferric hydroxide plaque formation on roots of Typha latifolia L. Plant Soil 102:177–184

    Article  CAS  Google Scholar 

  • Marcussen H, Joergensen K, Holm PE, Brocca D, Simmons RW, Dalsgaard A (2008) Element contents and food safety of water spinach (Ipomoea aquatica Forssk.) cultivated with wastewater in Hanoi, Vietnam. Environ Monit Assess 139:77–91

    Article  CAS  PubMed  Google Scholar 

  • María-Cervantes A, Conesa HM, González-Alcaraz MN, Álvarez-Rogel J (2010) Rhizosphere and flooding regime as key factors for the mobilisation of arsenic and potentially harmful metals in basic, mining-polluted salt marsh soils. Appl Geochem 25:1722–1733

    Article  Google Scholar 

  • Mei XQ, Ye ZH, Wong MH (2009) The relationship of root porosity and radial oxygen loss on arsenic tolerance and uptake in rice grains and straw. Environ Pollut 157:2550–2557

    Article  CAS  PubMed  Google Scholar 

  • Mei XQ, Wong MH, Yang Y, Dong HY, Qiu RL, Ye ZH (2012) The effects of radial oxygen loss on arsenic tolerance and uptake in rice and on its rhizosphere. Environ Pollut 165:109–117

    Article  CAS  PubMed  Google Scholar 

  • Miyadate H, Adachi S, Hiraizumi A, Tezuka K, Nakazawa N, Kawamoto T, Katou K, Kodama I, Sakurai K, Takahashi H, Satoh-Nagasawa N, Watanabe A, Fujimura T, Akagi H (2011) OsHMA3, a P1B-type of ATPase affects root-to-shoot cadmium translocation in rice by mediating efflux into vacuoles. New Phytol 189:190–199

    Article  CAS  PubMed  Google Scholar 

  • Otte ML, Rozema J, Koster L, Haarsma MS, Broekman RA (1989) Iron plaque on roots of Aster tripolium L.: interaction with zinc uptake. New Phytol 111:309–317

    Article  CAS  Google Scholar 

  • Pribyl DW (2010) A critical review of the conventional SOC to SOM conversion factor. Geoderma 156:75–83

    Article  CAS  Google Scholar 

  • Reddy CN, Patrick WH Jr (1977) Effect of redox potential and pH on the uptake of Cd and Pb by rice plants. J Environ Qual 6:259–262

    Article  CAS  Google Scholar 

  • Redjala T, Sterckeman T, Morel JL (2009) Cadmium uptake by roots: Contribution of apoplast and of high- and low-affinity membrane transport systems. Environ Exp Bot 67:235–242

    Article  CAS  Google Scholar 

  • Rivera-Becerril F, Calantzis C, Turnau K, Caussanel J-P, Belimov AA, Gianinazzi S, Strasser RJ, Gianinazzi-Pearson V (2002) Cadmium accumulation and buffering of cadmium-induced stress by arbuscular mycorrhiza in three Pisum sativum L. genotypes. J Exp Bot 53:1177–1185

    Article  CAS  PubMed  Google Scholar 

  • Sasaki A, Yamaji N, Yokosho K, Ma JF (2012) Nramp5 is a major transporter responsible for manganese and cadmium uptake in rice. Plant Cell 24(5):2155–2167

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Satarug S, Baker JR, Urbenjapol S, Haswell-Elkins M, Reilly PEB, Willams DJ (2003) A global perspective on cadmium pollution and toxicity in non-occupationally exposed population. Toxicol Lett 137:65–83

    Article  CAS  PubMed  Google Scholar 

  • Stolt P, Asp H, Hultin S (2006) Genetic variation in wheat cadmium accumulation on soils with different cadmium concentrations. J Agron Crop Sci 192:201–208

    Article  CAS  Google Scholar 

  • Tessier A, Campbell P, Bisson M (1979) Sequential extraction procedure for the speciation of particulate trace metals. Anal Chem 51:851–884

    Article  Google Scholar 

  • Thomas GM, Harrison HC (1991) Genetic line effects on parameters influencing cadmium concentration in lettuce (Lactuca sativa L.). J Plant Nutr 14:953–962

    Article  CAS  Google Scholar 

  • Tripathi R, Tripathi P, Dwivedi S, Kumar A, Mishra A, Chauhan PS, Norton GJ, Nautiyal CS (2014) Roles for root iron plaque in sequestration and uptake of heavy metals and metalloids in aquatic and wetland plants. Metallomics 6:1789–1800

    Article  CAS  PubMed  Google Scholar 

  • Ueno D, Yamaji N, Kono I, Huang CF, Ando T, Yano M, Ma JF (2010) Gene limiting cadmium accumulation in rice. Proc Natl Acad Sci U S A 107(38):16500–16505

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Uraguchi S, Fujiwara T (2013) Rice breaks ground for cadmium-free cereals. Curr Opin Plant Biol 16(3):328–334

    Article  CAS  PubMed  Google Scholar 

  • Uraguchi S, Mori S, Kuramata M, Kawasaki A, Arao T, Ishikawa S (2009) Root-to-shoot Cd translocation via the xylem is the major process determining shoot and grain cadmium accumulation in rice. J Exp Bot 60:2677–2688

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Van der Vliet L, Peterson C, Hale B (2007) Cd accumulation in roots and shoots of durum wheat: the roles of transpiration rate and apoplastic bypass. J Exp Bot 58:2939–2947

    Article  PubMed  Google Scholar 

  • Vymazal J, Švehla J (2013) Iron and manganese in sediments of constructed wetlands with horizontal subsurface flow treating municipal sewage. Ecol Eng 50:69–75

    Article  Google Scholar 

  • Wang JL, Wei F, Yang ZY (2007) Inter-and Intra-specific variations of Cd accumulation of 13 leafy vegetable species grown in Cd contaminated soils. J Agric Food Chem 34:1154–1158

    Google Scholar 

  • Wang MY, Chen AK, Wong MH, Qiu RL, Cheng H, Ye ZH (2011) Cadmium accumulation in and tolerance of rice (Oryza sativa L.) varieties with different rates of radial oxygen loss. Environ Pollut 159:1730–1736

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Ye ZH, Li B, Huang LN, Meng M, Shi JB, Jiang GB (2014) Growing rice aerobically markedly decreases mercury accumulation by reducing both Hg bioavailability and the production of MeHg. Environ Sci Technol 48:1878–1885

    Article  CAS  PubMed  Google Scholar 

  • Wei S, Twardowska I (2013) Main rhizosphere characteristics of the Cd hyperaccumulator Rorippa globosa (Turcz.) Thell. Plant Soil 372:669–681

    Article  CAS  Google Scholar 

  • Wiengweera A, Greenway H, Thomson CJ (1997) The use of agar nutrient solution to simulate lack of convection in waterlogged soils. Ann Bot 80:115–123

    Article  Google Scholar 

  • Williams PN, Lei M, Sun GX, Huang Q, Lu Y, Deacon C, Meharg AA, Zhu YG (2009) Occurrence and partitioning of cadmium, arsenic and lead in mine impacted paddy rice: Hunan, China. Sci Total Environ 43:637–642

    Article  CAS  Google Scholar 

  • Xu XY, McGrath SP, Meharg AA, Zhao FJ (2008) Growing rice aerobically markedly decreases arsenic accumulation. Environ Sci Technol 42:5574–5579

    Article  CAS  PubMed  Google Scholar 

  • Yang JX, Liu Y, Ye ZH (2012) Root-induced changes (pH, Eh, Fe2+ and speciation of Pb and Zn) in rhizosphere soils of four wetland plants with different ROL. Pedosphere 22:518–527

    Article  CAS  Google Scholar 

  • Youssef RA, Chino M (1989) Root-induced changes in the rhizosphere of plants II. Distribution of heavy metal across the rhizosphere in soil. Soil Sci Plant Nutr 35:609–621

    Article  CAS  Google Scholar 

  • Zhao FJ, Jiang RF, Dunham SJ, McGrath SP (2006) Cadmium uptake, translocation and tolerance in the hyperaccumulator Arabidopsis halleri. New Phytol 172:646–654

    Article  CAS  PubMed  Google Scholar 

  • Zheng SN, Zhang MK (2011) Effect of moisture regime on the redistribution of heavy metals in paddy soil. J Environ Sci 23:434–443

    Article  CAS  Google Scholar 

  • Zhuang P, Zou B, Li NY, Li ZA (2009) Heavy metal contamination in soils and food crops around Dabaoshan Mine in Guangdong, China: implication for human health. Environ Geochem Health 31:707–715

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was funded by the National Natural Science Foundation of China (30770417), a Start-up Research Grant for Newly Recruited Professors/(Research) Chair Professors, The Hong Kong Institute of Education (RG24/13-14R) and National ‘863’ projects of China (2012AA061510). We thank Prof. A.J.M. Baker (The Universities of Melbourne and Queensland, Australia) for help in the initial preparation and improvement of this paper and the anonymous reviewers for their helpful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhihong Ye.

Additional information

Responsible Editor: Juan Barcelo.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 13 kb)

ESM 2

(DOCX 97 kb)

ESM 3

(DOCX 197 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiao, Q., Wong, M.H., Huang, L. et al. Effects of cultivars and water management on cadmium accumulation in water spinach (Ipomoea aquatica Forsk.). Plant Soil 391, 33–49 (2015). https://doi.org/10.1007/s11104-015-2409-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-015-2409-5

Keywords