Advertisement

Plant and Soil

, Volume 391, Issue 1–2, pp 93–108 | Cite as

Plant identity and evenness affect yield and trace gas exchanges in forage mixtures

  • A. Ribas
  • R. Llurba
  • F. Gouriveau
  • N. Altimir
  • J. Connolly
  • M. T. Sebastià
Regular Article

Abstract

Aims

We explore the potential effect of plant diversity on yield and greenhouse gas exchanges in forage mixtures, identifying potential co-benefits between functions.

Methods

Using the biodiversity-ecosystem function (BEF) modelling framework (Connolly et al. 2013), we analyse results from a field experiment where the relative sown proportion of three forage species (a grass, a legume, and a non-legume forb) was varied to obtain a gradient in species proportions and evenness. The exchange rates of N2O, CH4, NH3 and CO2 were measured, together with forage yield and soil inorganic N content. We conducted gas measurements 4 years after sward establishment during the expected period of highest emissions.

Results

Results support the hypothesis that emission rates are affected by plant diversity. Sown evenness was found to decrease N2O exchange rates, and some evidence was found for a similar negative effect on CH4. Plant composition affected gas exchanges, with legume monocultures showing the highest emission rates for all gases. Diversity also increased yield and modulated NO3 and NH4 + soil concentrations.

Conclusions

The integrated analysis of yield and emission response to species diversity allows the identification of a range of species proportions for which both functions are optimized. Diversifying forage legume-based systems could contribute to mitigation while improving ecosystem productivity.

Keywords

Diversity effect Forage mixtures GHG emissions N2O, NH3, CO2 and CH4 exchange Mitigation 

Notes

Acknowledgments

We want to thank Rosa Teira, Camille Boubekeur, Miquel Nogues (UdL), and Salvador Aljazairi (UB) for their help and technical support. This work was developed within projects OPS (209/PC08/3-08.2, Spanish Ministry of Environment); projects from FECYT, the Spanish Foundation for Science and Technology: CARBOAGROPAS (CGL2006-13555-C03-01/BOS), and BIOGEI (CGL-2013-49142-C2-1-R); and FLUXPYR (INTERREG IV-A POCTEFA, cofinanced by EU-ERDF, Generalitat de Catalunya and Conseil Régional Midi-Pyrénées). NA acknowledges funding through FP7/2007-2013 grant agreement n° 275855. Activities within Consolider-Ingenio MONTES SD2008-0040 and the EU COST Action 852 also contributed to the development of ideas in this paper.

Supplementary material

11104_2015_2407_MOESM1_ESM.docx (822 kb)
ESM 1 (DOCX 821 kb)
11104_2015_2407_MOESM2_ESM.docx (133 kb)
ESM 2 (DOCX 132 kb)

References

  1. Baethgen WE, Alley MM (1989) A manual colorimetric procedure for measuring ammonium nitrogen in soil and plant digests. Commun Soil Sci Plant Anal 20:961–969CrossRefGoogle Scholar
  2. Baggs EM (2011) Soil microbial sources of nitrous oxide: recent advances in knowledge, emerging challenges and future direction. Curr Opin Environ Sustain 3:321–327CrossRefGoogle Scholar
  3. Baggs EM, Rees RM, Smith KA, Vinten AJA (2000) Nitrous oxide emission from soils after incorporating crop residues. Soil Use Manag 16:82–87CrossRefGoogle Scholar
  4. Bhandral R, Bittman S, Kowalenko G, Buckley K, Chantigny MH, Hunt DE, Bounaix F, Friesen A (2009) Enhancing soil infiltration reduces gaseous emissions and improves N uptake from applied dairy slurry. J Environ Qual 38:1372–1382CrossRefPubMedGoogle Scholar
  5. Bodelier P (2011) Interactions between nitrogenous fertilizers and methane cycling in wetland and upland. Curr Opin Environ Sustain 3:321–327CrossRefGoogle Scholar
  6. Bremner JP (1997) Sources of nitrous oxide in soils. Nutr Cycl Agroecosyst 49:7–16CrossRefGoogle Scholar
  7. Cataldo DA, Haroon M, Schrader LE, Youngs VL (1975) Rapid colorimetric determination of nitrate in plant tissue by nitration of salicylic acid. Commun Soil Sci Plant Anal 6:71–80CrossRefGoogle Scholar
  8. Chantigny MH, MacDonald JD, Beaupré C, Rochette P, Angers DA, Massé D, Parent LE (2009) Ammonia volatilization following surface application of raw and treated liquid swine manure. Nutr Cycl Agroecosyst 85:275–286CrossRefGoogle Scholar
  9. Connolly J, Finn J, Black A, Kirwan L, Brophy C, Lüscher A (2009) Effects of multi-species swards on dry matter production and the incidence of unsown species at three Irish sites. Ir J Agric Food Res 48:243–260Google Scholar
  10. Connolly J, Bell T, Bolger T, Brophy C, Carnus T, Finn J, Kirwan L, Isbell F, Levine J, Lüscher A, Picasso V, Roscher C, Sebastià T, Suter M, Weigelt A (2013) An improved model to predict the effects of changing biodiversity levels on ecosystem function. J Ecol 101:344–355CrossRefGoogle Scholar
  11. Conrad R (2007) Microbial ecology of methanogens and methanotrophs. Adv Agron 96:1–63Google Scholar
  12. de Klein C, Harvey M (2012) Nitrous oxide chamber methodology guidelines. Global research alliance on agricultural greenhouse gases. Ministry for Primary Industries, Wellington, New Zealand, http://www.globalresearchalliance.org Google Scholar
  13. de Klein C, Monaghan R (2011) The effect of farm and catchment management on nitrogen transformations and N2O losses from pastoral systems – can we offset the effects of future intensification? Curr Opin Environ Sustain 3:396–406CrossRefGoogle Scholar
  14. del Prado A, Merino P, Estavillo JM, Pinto M, González-Murua C (2006) N2O and NO emissions from different N sources and under a range of soil water contents. Nutr Cycl Agroecosyst 74:229–243CrossRefGoogle Scholar
  15. Dittert K, Lampe C, Gasche R, Butterbach-Bahl K, Wachendorf M, Papen H, Sattelmacher B, Taube F (2005) Short-term effects of single or combined application of mineral N fertilizer and cattle slurry on the fluxes of radiatively active trace gases from grassland soil. Soil Biol Biochem 37:1665–1674CrossRefGoogle Scholar
  16. Draper NR, Smith H (1998) Applied Regression Analysis, Wiley Series in Probability and Statistics, p 736Google Scholar
  17. Eisenhauer N, Milcu A, Sabais ACW, Bessler H, Brenner J, Engels C, Klarner B, Maraun M, Partsch S, Roscher C, Schonert F, Temperton VM, Thomisch K, Weigelt A, Weisser WW, Scheu S (2011) Plant diversity surpasses plant functional groups and plant productivity as driver of soil biota in the long term. PLoS ONE 6(1):e16055. doi: 10.1371/journal.pone.0016055 CrossRefPubMedCentralPubMedGoogle Scholar
  18. Erisman JW, Galloway J, Seitzinger S, Bleeker A, Butterbach-Bahl K (2011) Reactive nitrogen in the environment and its effect on climate change. Curr Opin Environ Sustain 3:281–290CrossRefGoogle Scholar
  19. Finn JA, Kirwan L, Connolly J, Sebastià MT, Helgadottir A, Baadshaug OH, Bélanger G, Black A, Brophy C, Collins RP, Cop J, Dalmannsdóttir S, Delgado I, Elgersma A, Fothergill M, Frankow-Lindberg BE, Ghesquiere A, Golinska B, Golinski P, Grieu P, Gustavsson AM, Höglind M, Huguenin-Elie O, Jorgensen M, Kadziuliene Z, Kurki P, Llurba R, Lunnan T, Porqueddu C, Suter M, Thumm U, Lüscher A (2013) Ecosystem function enhanced by combining four functional types of plant species in intensively managed grassland mixtures: a 3-year continental-scale field experiment. J Appl Ecol 50:365–375CrossRefGoogle Scholar
  20. Firestone MK, Smith MS, Firestone RB, Tiedje JM (1979) Influence of nitrate, nitrite, and oxygen on the composition of the gaseous products of denitrification in soil. Soil Sci Soc Am J 43:1140–1144CrossRefGoogle Scholar
  21. Flechard CR, Ambus P, Skiba U, Rees RM, Hensen A, van Amstel A, van den Pol-van DA, Soussana JF, Jones M, Clifton-Brown J, Raschi A, Horvath L, Neftel A, Jocher M, Ammann C, Leifeld J, Fuhrer J, Calanca P, Thalman E, Pilegaard K, Di Marco C, Campbell C, Nemitz E, Hargreaves KJ, Levy PE, Ball BC, Jones SK, van de Bulk WCM, Groot T, Blom M, Domingues R, Kasper G, Allard V, Ceschia E, Cellier P, Laville P, Henault C, Bizouard F, Abdalla M, Williams M, Baronti S, Berretti F, Grosz B (2007) Effects of climate and management intensity on nitrous oxide emissions in grassland systems across Europe. Agric Ecosyst Environ 121:135–152CrossRefGoogle Scholar
  22. Flessa H, Ruser R, Dörsch P, Kamp T, Jimenez MA, Munch JC, Beese F (2002) Integrated evaluation of greenhouse gas emissions (CO2, CH4, N2O) from two farming systems in southern Germany. Agric Ecosyst Environ 91:175–189CrossRefGoogle Scholar
  23. Fornara DA, Tilman D (2008) Plant functional composition influences rates of soil carbon and nitrogen accumulation. J Ecol 96:314–322CrossRefGoogle Scholar
  24. Hector A, Schmid B, Beierkuhnlein C, Caldeira MC, Diemer M, Dimitrakopoulos PG, Finn J, Freitas H, Giller PS, Good J, Harris R, Högberg P, Huss-Danell K, Joshi J, Jumpponen A, Körner C, Leadley PW, Loreau M, Minns A, Mulder CPH, O’Donovan G, Otway SJ, Pereira JS, Prinz A, Read DJ, Scherer-Lorenzen M, Schulze ED, Siamantziouras ASD, Spehn EM, Terry AC, Troumbis AY, Woodward FI, Yachi S, Lawton JH (1999) Plant diversity and productivity experiments in European grasslands. Science 286:1123–1127CrossRefPubMedGoogle Scholar
  25. Hooper DU, Chapin FS, Ewel JJ, Hector A, Inchausti P, Lavorel S, Lawton JH, Lodge DM, Loreau M, Naeem S, Schmid B, Setälä H, Symstad AJ, Vandermeer J, Wardle DA (2005) Effects of biodiversity on ecosystem functioning: a consensus of current knowledge. Ecol Monogr 75:3–35CrossRefGoogle Scholar
  26. Hutchinson GL, Livingston GP (2002) Soil-atmosphere gas exchange. In: Dane JH, Topp GC (eds) Methods of soil analysis, 4th edn. SSSA, Madison, WI, pp 1159–1182Google Scholar
  27. IPCC (Intergovernmental Panel on Climate Change) (2006) Guidelines for national greenhouse Gas inventories. In: Eggleston HS, Buendia L, Miwa K, Ngara T, Tanabe K (eds) IPCC, national greenhouse Gas inventories programme. IGES, JapanGoogle Scholar
  28. Intergovernmental Panel on Climate Change (2007) Climate change: synthesis report. In: Pachauri RK, Reisinger A (eds) Contribution of working groups I, II and III to the fourth assessment report of the intergovernmental panel on climate change. Intergovernmental Panel on Climate Change, Geneva, SwitzerlandGoogle Scholar
  29. Johnson JM, Franzluebbers AJ, Weyers SL, Reicosky DC (2007) Agricultural opportunities to mitigate greenhouse gas emissions. Environ Pollut 150:107–124CrossRefPubMedGoogle Scholar
  30. Jones H (1992) Plants and microclimate. A quantitative approach to environmental plant physiology. Cambridge Univeristy Press, CambridgeGoogle Scholar
  31. Kilian S, Werner D (1996) Enhanced denitrification in plots of N2 fixing faba beans compared to plots of non-fixing legume and non legumes. Biol Fertil Soils 21:77–83CrossRefGoogle Scholar
  32. Kirwan L, Lüscher A, Sebastià MT, Finn JA, Collins RP, Porqueddu C, Helgadottir A, Baadshaug OH, Brophy C, Coran C, Dalmannsdóttir S, Delgado I, Elgersma A, Fothergill M, Frankow-Lindberg BE, Golinski P, Grieu P, Gustavsson AM, Höglind M, Huguenin-Elie O, Iliadis C, Jørgensen M, Kadziuliene Z, Karyotis T, Lunnan T, Malengier M, Maltoni S, Meyer V, Nyfeler D, Nykanen-Kurki P, Parente J, Smith HJ, Thumm U, Connolly J (2007) Evenness drives consistent diversity effects in intensive grassland systems across 28 European sites. J Ecol 95:530–539CrossRefGoogle Scholar
  33. Kirwan L, Connolly J, Finn JA, Brophy C, Lüscher A, Nyfeler D, Sebastià MT (2009) Diversity-interaction modelling: estimating contributions of species identities and interactions to ecosystem function. Ecology 90:2032–2038CrossRefPubMedGoogle Scholar
  34. Liu LL, Greaver TL (2009) A review of nitrogen enrichment effects on three biogenic GHGs: the CO2 sink may be largely offset by stimulated N2O and CH4 emission. Ecol Lett 12:1103–1117CrossRefPubMedGoogle Scholar
  35. Loranger-Merciris G, Barthes L, Gastine A, Leadley P (2006) Rapid effects of plant species diversity and identity on soil microbial communities in experimental grassland ecosystems. Soil Biol Biochem 38:2336–2343CrossRefGoogle Scholar
  36. Macdonald CA, Anderson IC, Bardgett RD, Singh BK (2011) Role of nitrogen in carbon mitigation in forest ecosystems. Curr Opin Environ Sustain 3:303–310CrossRefGoogle Scholar
  37. Menéndez S, López-Bellido RJ, Benítez-Vega J, Gónzalez-Murua C, López-Bellido L, Estavillo JM (2008) Long-term effect of tillage, crop rotation and N fertilization to wheat on gaseous emissions under rainfed Mediterranean conditions. Eur J Agron 28:559–569CrossRefGoogle Scholar
  38. Mosier AR (1994) Nitrous oxide emissions from agricultural soils. Fertil Res 37:191–200CrossRefGoogle Scholar
  39. Mosier A, Schimel DS, Valentine DW, Bronson KF, Parton WJ (1991) Methane and nitrous oxide fluxes in native, fertilized and cultivated grasslands. Nature 350:330–332CrossRefGoogle Scholar
  40. Mosier AR, Duxbury JM, Freney JR, Hinemeyer O, Minami K, Johnson DE (1998) Mitigating agricultural emissions of methane. Clim Chang 40:39–80CrossRefGoogle Scholar
  41. Mueller KE, Tilman D, Fornara DA, Hobbie SE (2013) Root depth distribution and the diversity-productivity relationship in a long-term grassland experiment. Ecology 94:787–793CrossRefGoogle Scholar
  42. Niklaus PA, Kandeler E, Leadley PW, Schmid B, Tscherko D, Korner C (2001) A link between plant diversity, elevated CO2 and soil nitrate. Oecologia 127:540–548CrossRefGoogle Scholar
  43. Niklaus PA, Wardle DA, Tate KR (2006) Effects of plant species diversity and composition on nitrogen cycling and the trace gas balances of soils. Plant Soil 282:83–98CrossRefGoogle Scholar
  44. Nyfeler D, Huguenin-Elie O, Suter M, Frossard E, Connolly J, Lüscher A (2009) Strong mixture effects among four species in fertilized agricultural grassland led to persistent and consistent transgressive overyielding. J Appl Ecol 46:683–691CrossRefGoogle Scholar
  45. Nyfeler D, Huguenin-Elie O, Suter M, Frossard E, Lüscher A (2011) Grass-legume mixtures can yield more nitrogen than legume pure stands due to mutual stimulation of nitrogen uptake from symbiotic and non-symbiotic sources. Agric Ecosyst Environ 140:155–163CrossRefGoogle Scholar
  46. Oelmann Y, Kreutziger Y, Bol R, Wilcke W (2007) Nitrate leaching in soil: Tracing the NO3 sources with the help of stable N and O isotopes. Soil Biol Biochem 39:3024–3033CrossRefGoogle Scholar
  47. Oenema O, Witzke HP, Klimont Z, Lesschen JP, Velthof GL (2009) Integrated assessment of promising measures to decrease nitrogen losses from agriculture in EU-27. Agric Ecosyst Environ 133:280–288CrossRefGoogle Scholar
  48. Pappa VA, Rees RM, Walker RL, Baddeley JA, Watson CA (2011) Nitrous oxide emissions and nitrate leaching in an arable rotation resulting from the presence of an intercrop. Agric Ecosyst Environ 141:153–161CrossRefGoogle Scholar
  49. Rochette P, Eriksen-Hamel NS (2008) Chamber measurements of soil nitrous oxide flux: are absolute values reliable? Soil Sci Soc Am J 72:331–342CrossRefGoogle Scholar
  50. Rochette P, Janzen HH (2005) Towards a revised coefficient for estimating N2O emissions from legumes. Nutr Cycl Agroecosyst 73:171–179CrossRefGoogle Scholar
  51. Rochette P, Angers DA, Belanger G, Chantigny M, Prévost D, Lévesque G (2004) Emissions of N2O from alfalfa and soybean crops in eastern Canada. Soil Sci Soc Am J 68:493–506CrossRefGoogle Scholar
  52. Sabine CL (2006) Global Carbon Cycle. eLSGoogle Scholar
  53. Saggar S (2010) Estimation of nitrous oxide emission from ecosystems and its mitigation technologies Preface. Agric Ecosyst Environ 136:189–191CrossRefGoogle Scholar
  54. Schrier-Uijl AP, Kroon PS, Hensen A, Leffelaarc PA, Berendsea F, Veenendaala EM (2009) Comparison of chamber and eddy covariance-based CO2 and CH4 emission estimates in a heterogeneous grass ecosystem on peat. Agric Forest Meteorol 150:825–831CrossRefGoogle Scholar
  55. Singh BK, Bardgett RD, Smith P, Reay DS (2010) Microorganisms and climate change: Terrestrial feedbacks and mitigation options. Nat Rev Microbiol 8:779–790CrossRefPubMedGoogle Scholar
  56. Snyder CS, Bruulsema TW, Jensen TL, Fixen PE (2009) Review of greenhouse gas emissions from crop production systems and fertilizer management effects. Agric Ecosyst Environ 133:247–266CrossRefGoogle Scholar
  57. Steinbeiss S, Bebler H, Engels C, Temperton VM, Buchmann N, Roscher C, Kreutziger Y, Baade J, Habekost M, Cleixner G (2008) Plant diversity positively affects short-term soil carbon storage in experimental grasslands. Global Change Biol 14:2937–2949CrossRefGoogle Scholar
  58. Steudler PA, Bowden RD, Melillo JM, Aber JD (1989) Influence of nitrogen-fertilization on methane uptake in temperate forest soils. Nature 341:314–316CrossRefGoogle Scholar
  59. Sun H, Zhang C, Song C, Chang S, Gu B, Chen Z, Peng C, Chang J, Ge Y (2013) The effects of plant diversity on nitrous oxide emissions in hydroponic microcosms. Atmos Environ 77:544–547CrossRefGoogle Scholar
  60. Tilman D, Wedin D, Knops J (1996) Productivity and sustainability influenced by biodiversity in grassland ecosystems. Nature 22:703–707Google Scholar
  61. Velthof GL, Oudendag D, Witzke HR, Asman WAH, Klimont Z, Oenema O (2009) Integrated assessment of nitrogen losses from Agriculture in EU-27 using MITERRA-EUROPE. J Environ Qual 38:402–417CrossRefPubMedGoogle Scholar
  62. Wallenstein MD, Myrold DD, Firestone M, Voytek M (2006) Environmental controls on denitrifying communities and denitrification rates: insights from molecular methods. A synthesis of denitrification. Ecol Appl 16:2143–2152CrossRefPubMedGoogle Scholar
  63. Zavaleta ES, Pasari JR, Hulvey KB, Tilman GD (2010) Sustaining multiple ecosystem functions in grassland communities requires higher biodiversity. Proc Natl Acad Sci U S A 107:1443–1446CrossRefPubMedCentralPubMedGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • A. Ribas
    • 1
    • 2
    • 3
  • R. Llurba
    • 1
    • 4
  • F. Gouriveau
    • 1
  • N. Altimir
    • 1
  • J. Connolly
    • 5
  • M. T. Sebastià
    • 1
    • 4
  1. 1.CTFC, Forest Sciences Centre of CataloniaSolsonaSpain
  2. 2.BABVE, Edifici CUniversitat Autònoma de BarcelonaBellaterraSpain
  3. 3.CREAFCataloniaSpain
  4. 4.Departament HBJ, ETSEAUniversity of LleidaLleidaSpain
  5. 5.UCD, School of Mathematical SciencesDublin 4Ireland

Personalised recommendations