Skip to main content

Advertisement

Log in

Short-range order mineral phases control the distribution of important macronutrients in coarse-textured forest soils of coastal British Columbia, Canada

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Background and aims

Secondary minerals are known to provide sorption sites that contribute significantly to plant nutrient retention within the soil profile. The influence of mineral components on nutrient availability is however less certain in coarse-textured soils, where the abundance of clay minerals is low. The objective of this study is to identify important edaphic predictors of nutrient distribution in coarse-textured forest soils.

Methods

We measured base cations, nitrogen and phosphorus forms in the organic, mineral top- and subsoil horizons of podzols of southwestern Canada and investigated their relation to soil properties using simple and canonical correlation analysis.

Results

We found that soil organic carbon and reactive aluminum and iron species were stronger predictors of nutrient distribution than the silt and clay content. In particular, short-range order (SRO) Al and Fe mineral phases were strongly correlated with the distribution of potassium and phosphorus. Preferential association of K with SRO phases likely contributed to K retention in the profile. Phosphorus sorption to SRO phases decreased the amount of available P. Contrary to generally expected geochemical behaviour, labile P was negatively related to pH. We attributed this anomalous relation to an increase in the proportion of strongly sorptive SRO Al and Fe phases at higher pH.

Conclusion

This study shows that understanding the sorptive properties of naturally-occurring SRO Al and Fe species is important to our ability to predict nutrient availability and points to the need for further investigation of the geochemical behaviour of SRO mineral phases under field conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Achat DL, Bakker MR, Augusto L, Morel C (2013) Contributions of microbial and physical–chemical processes to phosphorus availability in Podzols and Arenosols under a temperate forest. Geoderma 211–212:18–27. doi:10.1016/j.geoderma.2013.07.003

    Article  Google Scholar 

  • Achat DL, Bakker MR, Augusto L, Saur E, Dousseron L, Morel C (2009) Evaluation of the phosphorus status of P-deficient podzols in temperate pine stands: combining isotopic dilution and extraction methods. Biogeochemistry 92:183–200. doi:10.1007/s10533-008-9283-7

    Article  CAS  Google Scholar 

  • Amarasiri SL, Olsen SR (1973) Liming as related to solubility of P and plant growth in an acid tropical soil. Soil Sci Soc Am J 37:716–721

    Article  Google Scholar 

  • Attiwill PM, Adams MA (1993) Nutrient cycling in forests. New Phytol 124:561–582. doi:10.1111/j.1469-8137.1993.tb03847.x

    Article  CAS  Google Scholar 

  • Bach FR, Jordan MI (2005) A probabilistic interpretation of canonical correlation analysis. Rep. 688. Department of Statistics, University of California, Berkeley

  • Bartlett MS (1947) The general canonical correlation distribution. Ann Math Stat 18:1–17

    Article  Google Scholar 

  • Bascomb CL (1968) Distribution of pyrophosphate-extractable iron and organic carbon in soils of various groups. Eur J Soil Sci 19:251–268. doi:10.1111/j.1365-2389.1968.tb01538.x

    Article  CAS  Google Scholar 

  • Bennett JN, Blevins LL, Barker JE, Blevins DP, Prescott CE (2003) Increases in tree growth and nutrient supply still apparent 10 to 13 years following fertilization and vegetation control of salal-dominated cedar-hemlock stands on Vancouver Island. Can J For Res 33:1516–1524. doi:10.1139/X03-069

    Article  CAS  Google Scholar 

  • Benton Jones Jr J (2001) Laboratory guide for conducting soil tests and plant analysis. CRC press, Boca Raton, FL

    Book  Google Scholar 

  • Blevins LL, Prescott CE, Van Niejenhuis A (2006) The roles of nitrogen and phosphorus in increasing productivity of western hemlock and western redcedar plantations on northern Vancouver Island. For Ecol Manage 234:116–122. doi:10.1016/j.foreco.2006.06.029

    Article  Google Scholar 

  • Bray RH, Kurtz LT (1945) Determination of total, organic, and available forms of phosphorus in soils. Soil Sci 59:39–45

    Article  CAS  Google Scholar 

  • Burnham CP, Lopez-Hernandez D (1982) Phosphate retention in different soil taxonomic classes. Soil Sci 134:376–380

    Article  CAS  Google Scholar 

  • Buxbaum CA, Nowak CA, White EH (2005) Deep subsoil nutrient uptake in potassium-deficient, aggrading Pinus resinosa plantation. Can J For Res 35:1978–1983. doi:10.1139/x05-102

    Article  CAS  Google Scholar 

  • Cade-Menun BJ, Berch S, Preston CM, Lavkulich LM (2000) Phosphorus forms and related soil chemistry of podzolic soils on northern Vancouver island. I. A comparison of two forest types. Can J For Res 30:1714–1725. doi:10.1139/x00-098

    Article  CAS  Google Scholar 

  • Chu CH, Johnson LG (1979) Cation-exchange behavior of clays and synthetic aluminosilica gels. Clays Clay Miner 27:87–90. doi:10.1346/CCMN.1979.0270202

    Article  CAS  Google Scholar 

  • Dahlgren RA (1994) Quantification of allophane and imogolite. In: Amonette JE, Zelazny LW (eds) Quantitative methods in soil mineralogy. Soil Science Society of America, Madison, WI, pp 430–451

    Google Scholar 

  • Devau N, Hinsinger P, Le Cadre E, Colomb B, Gérard F (2011) Fertilization and pH effects on processes and mechanisms controlling dissolved inorganic phosphorus in soils. Geochim Cosmochim Acta 75:2980–2996. doi:10.1016/j.gca.2011.02.034

    Article  CAS  Google Scholar 

  • Devau N, Cadre EL, Hinsinger P, Jaillard B, Gérard F (2009) Soil pH controls the environmental availability of phosphorus: Experimental and mechanistic modelling approaches. Appl Geochem 24:2163–2174. doi:10.1016/j.apgeochem.2009.09.020

    Article  CAS  Google Scholar 

  • Edzwald JK, Toensing DC, Leung MCY (1976) Phosphate adsorption reactions with clay minerals. Can J Soil Sci 10:485–490

    CAS  Google Scholar 

  • Elliott HA, Sparks DL (1981) Electrokinetic behavior of a Paleudult profile in relation to mineralogical composition. Soil Sci 132:402–409

    Article  CAS  Google Scholar 

  • Elser JJ, Bracken MES, Cleland EE et al (2007) Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems. Ecol Lett 10:1135–1142. doi:10.1111/j.1461-0248.2007.01113.x

    Article  PubMed  Google Scholar 

  • Environment Canada (2013) Canadian climate normals 1981–2010. http://climate.weatheroffice.gc.ca/climate_normals/index_e.html. Accessed August 9 2013. Environment Canada, Fredericton, NB, Canada

  • Fernandez-Martinez M, Vicca S, Janssens IA et al (2014) Nutrient availability as the key regulator of global forest carbon balance. Nature Clim Change 4:471–476. doi:10.1038/nclimate2177

    Article  CAS  Google Scholar 

  • Fish L (1988) Why multivariate methods are usually vital. Meas Eval Couns Dev 21:130–137

    Google Scholar 

  • Fransson A (2001) Evaluation of oxalate/oxalic acid for extracting plant available phosphorus in unfertilized acid soils. Commun Soil Sci Plant Anal 32:2469–2484. doi:10.1081/CSS-120000385

    Article  CAS  Google Scholar 

  • Gessel SP, Cole DW, Steinbrenner EC (1973) Nitrogen balances in forest ecosystems of the Pacific Northwest. Soil Biol Biochem 5:19–34. doi:10.1016/0038-0717(73)90090-4

    Article  Google Scholar 

  • Goldberg S, Sposito G (1984) A chemical model of phosphate adsorption by soils: I. Reference oxide minerals. Soil Sci Soc Am J 48:772–778

    Article  CAS  Google Scholar 

  • Grand S, Lavkulich LM (2013) Potential influence of poorly crystalline minerals on soil chemistry in Podzols of southwestern Canada. Eur J Soil Sci 64:651–660. doi:10.1111/ejss.12062

    Article  CAS  Google Scholar 

  • Grand S, Lavkulich LM (2011) Depth distribution and predictors of soil organic carbon in Podzols of a forested watershed in southwestern Canada. Soil Sci 176:164–174. doi:10.1097/SS.0b013e3182128671

    Article  CAS  Google Scholar 

  • Grand S, Lavkulich LM (2008) Reactive soil components and pedogenesis of highly productive coastal podzols. Geochim Cosmochim Acta, 72 Goldschmidt Abstracts Suppl. A323. Pergamon, Oxford

  • Gustafsson JP, Mwamila LB, Kergoat K (2012) The pH dependence of phosphate sorption and desorption in Swedish agricultural soils. Geoderma 189–190:304–311. doi:10.1016/j.geoderma.2012.05.014

    Article  Google Scholar 

  • Harmsen J (2007) Measuring bioavailability: From a scientific approach to standard methods. J Environ Qual 36:1420–1428. doi:10.2134/jeq2006.0492

    Article  CAS  PubMed  Google Scholar 

  • Harsh JB, Doner HE (1985) The nature and stability of aluminum hydroxide precipitated on Wyoming montmorillonite. Geoderma 36:45–56

    Article  CAS  Google Scholar 

  • Hartikainen H, Simojoki A (1997) Changes in solid- and solution-phase phosphorus in soil on acidification. Eur J Soil Sci 48:493–498. doi:10.1111/j.1365-2389.1997.tb00215.x

    Article  CAS  Google Scholar 

  • Hartikainen H, Rasa K, Withers PJA (2010) Phosphorus exchange properties of European soils and sediments derived from them. Eur J Soil Sci 61:1033–1042. doi:10.1111/j.1365-2389.2010.01295.x

    Article  CAS  Google Scholar 

  • Haynes RJ (1982) Effects of liming on phosphate availability in acid soils. Plant Soil 68:289–308. doi:10.1007/BF02197935

    Article  CAS  Google Scholar 

  • He Z, Zhu J (1997) Transformation and bioavailability of specifically sorbed phosphate on variable-charge minerals in soils. Biol Fert Soil 25:175–181. doi:10.1007/s003740050300

    Article  Google Scholar 

  • Helyar KR, Munns DN, Burau RG (1976) Adsorption of phosphate by gibbsite. J Soil Sci 27:307–314. doi:10.1111/j.1365-2389.1976.tb02001.x

    Article  CAS  Google Scholar 

  • Hendershot WH, Lavkulich LM (1983) Effect of sesquioxide coatings on surface charge of standard mineral and soil samples. Soil Sci Soc Am J 47:1252–1260

    Article  CAS  Google Scholar 

  • Hinsinger P (2001) Bioavailability of soil inorganic P in the rhizosphere as affected by root-induced chemical changes: a review. Plant Soil 237:173–195. doi:10.1023/A:1013351617532

    Article  CAS  Google Scholar 

  • Hinsinger P, Bengough AG, Vetterlein D, Young I (2009) Rhizosphere: biophysics, biogeochemistry and ecological relevance. Plant Soil 321:117–152. doi:10.1007/s11104-008-9885-9

    Article  CAS  Google Scholar 

  • ISO standards (1996) Determination of nitrite nitrogen and nitrate nitrogen and the sum of both by flow analysis and spectrophotometric detection. Rep. ISO 13395. ISO central office, Geneva, Switzerland

  • IUSS Working Group WRB (2006) World reference base for soil resources. Rep. World Soil Resources Reports No. 103. FAO, Rome

  • Janssens IA, Dieleman W, Luyssaert S et al (2010) Reduction of forest soil respiration in response to nitrogen deposition. Nat Geosci 3:315–322

    Article  CAS  Google Scholar 

  • Johnson CE (2002) Cation exchange properties of acid forest soils of the northeastern USA. Eur J Soil Sci 53:271–282. doi:10.1046/j.1365-2389.2002.00441.x

    Article  CAS  Google Scholar 

  • Kalra YP, Maynard DG (1991) Methods manual for forest soil and plant analysis. Forestry Canada, Northwest Region, Northern Forestry Centre, Edmonton, Alberta

    Google Scholar 

  • Kettler TA, Doran JW, Gilbert TL (2001) Simplified method for soil particle-size determination to accompany soil-quality analyses. Soil Sci Soc Am J 65:849–852. doi:10.2136/sssaj2001.653849x

    Article  CAS  Google Scholar 

  • Kshirsagar AM (1972) Multivariate analysis. Marcel Dekker, New York

    Google Scholar 

  • Lindsay WL, Wathall PM (1996) The solubility of aluminum in soils. In: Sposito G (ed) The environmental chemistry of aluminum, 2nd edn. CRC Lewis publishers, Boca Raton, FL, pp 333–362

    Google Scholar 

  • Lookman R, Vandeweert N, Merckx R, Vlassak K (1995) Geostatistical assessment of the regional distribution of phosphate sorption capacity parameters (FeOX and AlOX) in northern Belgium. Geoderma 66:285–296. doi:10.1016/0016-7061(94)00084-N

    Article  CAS  Google Scholar 

  • Manly BFJ (2005) Multivariate statistical methods: A primer. Chapman & Hall/CRC, Boca Raton, FL

    Google Scholar 

  • Manning BA, Goldberg S (1996) Modeling arsenate competitive adsorption on kaolinite, montmorillonite and illite. Clays Clay Miner 44:609–623. doi:10.1346/CCMN.1996.0440504

    Article  CAS  Google Scholar 

  • McDowell R, Sharpley A (2001) Approximating phosphorus release from soils to surface runoff and subsurface drainage. J Environ Qual 30:508–520. doi:10.2134/jeq2001.302508x

    Article  CAS  PubMed  Google Scholar 

  • McKeague JA, Day DH (1966) Dithionite- and oxalate-extractable Fe and Al as aids in differentiating various classes of soils. Can J Soil Sci 46:13–22

    Article  CAS  Google Scholar 

  • Mehra OP, Jackson ML (1960) Iron oxide removal from soils and clays by dithionite-citrate system buffered with sodium bicarbonate. In: Swineford A (ed) Proceedings of the 7th national conference on clays and clay minerals. Pergamon Press, Oxford, UK, pp 317–327

    Google Scholar 

  • Murrmann RP, Peech M (1969) Effect of pH on labile and soluble phosphate in soils. Soil Sci Soc Am J 33:205–210

    Article  CAS  Google Scholar 

  • Oren R, Ellsworth D, Johnsen K et al (2001) Soil fertility limits carbon sequestration by forest ecosystems in a CO2-enriched atmosphere. Nature 411:469–472. doi:10.1038/35078064

    Article  CAS  PubMed  Google Scholar 

  • Ouimet R, Arp P, Watmough S, Aherne J, Demerchant I (2006) Determination and mapping critical loads of acidity and exceedances for upland forest soils in Eastern Canada. Water Air Soil Pollut 172:57–66. doi:10.1007/s11270-005-9050-5

    Article  CAS  Google Scholar 

  • Parfitt RL (1980) Chemical properties of variable charge soils. In: Theng BKG (ed) Soils with variable charge. New Zealand society of soil science, Palmerston North, pp 167–194

    Google Scholar 

  • Parfitt RL, Childs CW (1988) Estimation of forms of Fe and Al: A review, and analyses of contrasting soils by dissolution and Moessbauer methods. Aust J Soil Res 26:121–144

    Article  CAS  Google Scholar 

  • Parkinson JA, Allen SE (1975) A wet oxidation procedure suitable for the determination of nitrogen and mineral nutrients in biological material. Commun Soil Sci Plant Anal 6:1–11

    Article  CAS  Google Scholar 

  • Pierre WH, Scarseth GD (1931) Determination of the percentage base saturation of soils and its value in different soils at definite pH values. Soil Sci 31:99–114

    Article  CAS  Google Scholar 

  • Preston CM, Trofymow JA (2000) Characterization of soil P in coastal forest chronosequences of southern Vancouver Island: effects of climate and harvesting disturbance. Can J Soil Sci 80:633–647. doi:10.4141/S99-073

    Article  CAS  Google Scholar 

  • Rajan SSS (1976) Changes in net surface-charge of hydrous alumina with phosphate adsorption. Nature 262:45–46. doi:10.1038/262045a0

    Article  CAS  Google Scholar 

  • Rao CR (1973) Linear statistical inference. John Wiley & Sons, New York

    Google Scholar 

  • Ross DS, Matschonat G, Skyllberg U (2008) Cation exchange in forest soils: the need for a new perspective. Eur J Soil Sci 59:1141–1159. doi:10.1111/j.1365-2389.2008.01069.x

    Article  CAS  Google Scholar 

  • Rowland AP, Grimshaw HM (1985) A wet oxidation procedure suitable for total nitrogen and phosphorus in soil. Commun Soil Sci Plant Anal 16:551–560. doi:10.1080/00103628509367628

  • Rumpel C, Eusterhues K, Kögel-Knabner I (2004) Location and chemical composition of stabilized organic carbon in topsoil and subsoil horizons of two acid forest soils. Soil Biol Biochem 36:177–190. doi:10.1016/j.soilbio.2003.09.005

    Article  CAS  Google Scholar 

  • Saidy AR, Smernik RJ, Baldock JA, Kaiser K, Sanderman J (2013) The sorption of organic carbon onto differing clay minerals in the presence and absence of hydrous iron oxide. Geoderma 209–210:15–21. doi:10.1016/j.geoderma.2013.05.026

    Article  Google Scholar 

  • SAS Institute Inc (2010) SAS. Version 9.3. SAS Institute, Cary, NC

  • Schaetzl RJ, Anderson S (eds) (2010) Soils: Genesis and geomorphology. Cambridge University Press, New York

    Google Scholar 

  • Schofield RK, Taylor AW (1955) The measurement of soil pH. Soil Sci Soc Am Proc 19:164–167. doi:10.2136/sssaj1955.03615995001900020013x

    Article  CAS  Google Scholar 

  • Skyllberg U (1994) Aluminum associated with a pH-increase in the humus layer of a boreal haplic podzol. Interciencia 19:356–365

    Google Scholar 

  • Snyder KE, Harter RD (1985) Changes in solum chemistry following clearcutting of northern hardwood stands. Soil Sci Soc Am J 49:223–228. doi:10.2136/sssaj1985.03615995004900010045x

    Article  CAS  Google Scholar 

  • Strahm BD, Harrison RB (2006) Nitrate sorption in a variable-charge forest soil of the Pacific Northwest. Soil Sci 171:313–321. doi:10.1097/01.ss.0000209355.76407.16

    Article  CAS  Google Scholar 

  • Talibudeen O (1981) Cation exchange in soils. In: Greenland DJ, Hayes MHB (eds) The chemistry of soil processes. John Wiley & Sons, New York, pp 115–177

    Google Scholar 

  • Thiffault E, Hannam KD, Pare D et al (2011) Effects of forest biomass harvesting on soil productivity in boreal and temperate forests - A review. Env Rev 19:278–309. doi:10.1139/A11-009

    Article  Google Scholar 

  • Thomas GW (1982) Exchangeable cations. In: Page AL (ed) Methods of soil analysis, 2nd edn. American Society of Agronomy, Madison, WI, pp 159–165

    Google Scholar 

  • Thompson B (1991) A primer on the logic and use of canonical correlation analysis. Meas Eval Couns Dev 24:80–95

    Google Scholar 

  • van der Zee SE, van Riemsdijk WH (1988) Model for long-term phosphate reaction kinetics in soil. J Environ Qual 17:35–41

    Google Scholar 

  • Van Reeuwijk LP, de Villiers JM (1968) Potassium fixation by amorphous aluminosilica gels. Soil Sci Soc Am Proc 32:238–240

    Article  Google Scholar 

  • Verdouw H, Van Echteld CJA, Dekkers EMJ (1978) Ammonia determination based on indophenol formation with sodium salicylate. Water Res 12:399–402. doi:10.1016/0043-1354(78)90107-0

    Article  CAS  Google Scholar 

  • Vicca S, Luyssaert S, Peñuelas J et al (2012) Fertile forests produce biomass more efficiently. Ecol Lett 15:520–526. doi:10.1111/j.1461-0248.2012.01775.x

    Article  CAS  PubMed  Google Scholar 

  • Walbridge MR, Richardson CJ, Swank WT (1991) Vertical distribution of biological and geochemical phosphorus subcycles in two southern Appalachian forest soils. Biogeochemistry 13:61–85. doi:10.1007/BF00002876

    Article  CAS  Google Scholar 

  • Webster R (2007) Analysis of variance, inference, multiple comparisons and sampling effects in soil research. Eur J Soil Sci 58:74–82. doi:10.1111/j.1365-2389.2006.00801.x

    Article  Google Scholar 

  • Weetman GF, Prescott CE, Kohlberger FL, Fournier RM (1997) Ten-year growth response of coastal Douglas-fir on Vancouver island to N and S fertilization in an optimum nutrition trial. Can J For Res 27:1478–1482. doi:10.1139/x97-105

    Article  Google Scholar 

  • Weng L, Vega FA, Van Riemsdijk WH (2011) Competitive and synergistic effects in pH dependent phosphate adsorption in soils: LCD modeling. Environ Sci Technol 45:8420–8428. doi:10.1021/es201844d

    Article  CAS  PubMed  Google Scholar 

  • Yuan G, Lavkulich LM (1994) Phosphate sorption in relation to extractable iron and aluminum in Spodosols. Soil Sci Soc Am J 58:343–346

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was funded by a Natural Sciences and Engineering Research Council of Canada Discovery Grant. We thank Dr. Robert Hudson for his help with study design and field logistics as well as Drs. Cindy Prescott and Hans Schreier for invaluable comments on an earlier version of this report. We also thank field assistants Marina Romeo and Peter Shanahan, laboratory manager Carol Dyck and laboratory technician Keren Ferguson for their assistance with field sampling and analyses. Finally, we wish to thank two anonymous reviewers for exceptional insights on an earlier version of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephanie Grand.

Additional information

Responsible Editor: Hans Lambers.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grand, S., Lavkulich, L.M. Short-range order mineral phases control the distribution of important macronutrients in coarse-textured forest soils of coastal British Columbia, Canada. Plant Soil 390, 77–93 (2015). https://doi.org/10.1007/s11104-014-2372-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-014-2372-6

Keywords

Navigation