Skip to main content
Log in

Partitioning NEE for absolute C input into various ecosystem pools by combining results from eddy-covariance, atmospheric flux partitioning and 13CO2 pulse labeling

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Background and aims

The complexity of ecosystem processes, especially under continuously changing environmental conditions, requires high-resolution insight into ecosystem carbon (C) fluxes. It is essential to gain not only information about relative C balance and fluxes (common for partitioning studies), but also to obtain these in absolute mass units.

Methods

To evaluate absolute fluxes in belowground C pools, the results of 21-day eddy-covariance and stable isotope labeling experiment in summer 2010, were combined. Eddy-covariance based net ecosystem exchange was measured on extensively managed grassland and separated into underlying assimilation and ecosystem respiration through the use of a C flux partitioning model. Resultant CO2 assimilation served as absolute C input into the ecosystem and was further partitioned by applying the relative C distribution in subsidiary pools, gained by 13C pulse labeling and tracing.

Results

The results form eddy-covariance measurements showed that the extensively managed grassland was a significant net C sink of −91 g C m−2 a−1 in 2010.

The mean daily assimilation of −7.1 g C m−2 d−1 was partitioned into fluxes of 2.5, 0.8, 0.5, 2.3 and 1.0 g C m−2 d−1 into shoots, roots, soil, shoot respiration and CO2 efflux from soil, respectively.

Conclusions

We conclude that the combination of EC measurements with isotope labeling techniques allowed determining the absolute C input into several ecosystem pools. Hence, the study demonstrates an approach to expand atmospheric flux measurements and to gain insight into the importance of individual ecosystem pools for soil C cycling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Allard V, Robin C, Newton P, Lieffering M, Soussana J (2006) Short and long–term effects of elevated CO2 on Lolium perenne rhizodeposition and its consequences on soil organic matter turnover and plant N yield. Soil Biol Biochem 38:1178–1187

    Article  CAS  Google Scholar 

  • Allard V, Soussana J, Falcimagne R, Berbigier P, Bonnefond J, Ceschia E, D’hour P, Hénault C, Laville P, Martin C, Pinarès–Patino C (2007) The role of grazing management for the net biome productivity and greenhouse gas budget (CO2, N2O and CH4) of semi–natural grassland. Agric Ecosyst Environ 121:47–58

    Article  CAS  Google Scholar 

  • Ammann C, Flechard CR, Leifeld J, Neftel A, Fuhrer J (2007) The carbon budget of newly established temperate grassland depends on management intensity. The greenhouse gas balance of grasslands in Europe. Agric Ecosyst Environ 121:5–20

    Article  CAS  Google Scholar 

  • Ammann C, Spirig C, Leifeld J, Neftel A (2009) Assessment of the nitrogen and carbon budget of two managed temperate grassland fields. Agric Ecosyst Environ 133:150–162

    Article  CAS  Google Scholar 

  • Aubinet M, Grelle A, Ibrom A, Rannik Ü, Moncrieff J, Foken T, Kowalski AS, Martin PH, Berbigier P, Bernhofer C, Clement R, Elbers JA, Granier A, Grünwald T, Morgenstern K, Pilegaard K, Rebmann C, Snijders W, Valentini R, Vesala T (2000) Estimates of the Annual Net Carbon and Water Exchange of Forests: The EUROFLUX Methodology. Adv Ecol Res: 113–175

  • Aubinet M, Vesala T, Papale D (2012) Eddy covariance. Springer, Dordrecht

    Book  Google Scholar 

  • Bahn M, Schmitt M, Siegwolf R, Richter A, Brüggemann N (2009) Does photosynthesis affect grassland soil–respired CO 2 and its carbon isotope composition on a diurnal timescale? New Phytol 182:451–460

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Baldocchi DD (2003) Assessing the eddy covariance technique for evaluating carbon dioxide exchange rates of ecosystems: past, present and future. Glob Chang Biol 9:479–492

    Article  Google Scholar 

  • Baldocchi DD, Falge E, Gu LH, Olson R, Hollinger DY, Running S, Anthoni P, Bernhofer C, Davis K, Evans R, Fuentes J, Goldstein AH, Katul GG, Law BE, Lee XH, Malhi Y, Meyers TP, Munger JW, Oechel W, Paw UKT, Pilegaard K, Schmid HP, Valentini R, Verma S, Vesala T, Wilson K, Wofsy S (2001) FLUXNET: a new tool to study the temporal and spatial variability of ecosystem–scale carbon dioxide, water vapor, and energy flux densities. Bull Am Meteorol Soc 82:2415–2434

    Article  Google Scholar 

  • Bazot S, Ulff L, Blum H, Nguyen C, Robin C (2006) Effects of elevated CO2 concentration on rhizodeposition from Lolium perenne grown on soil exposed to 9 years of CO2 enrichment. Soil Biol Biochem 38:729–736

    Article  CAS  Google Scholar 

  • Biasi C, Pitkämäki AS, Tavi NM, Koponen HT, Martikainen PJ (2012) An isotope approach based on 13C pulse–chase labelling vs. the root trenching method to separate heterotrophic and autotrophic respiration in cultivated peat lands. Boreal Environ Res 17(3/4):184–192

    CAS  Google Scholar 

  • Bowling DR, Tans PP, Monson RK (2001) Partitioning net ecosystem carbon exchange with isotopic fluxes of CO2. Glob Chang Biol 7:127–145

    Article  Google Scholar 

  • Buchmann N (2000) Biotic and abiotic factors controlling soil respiration rates in Picea abies stands. Soil Biol Biochem 32:1625–1635

    Article  CAS  Google Scholar 

  • Buchmann N (2002) Plant ecophysiology and forest response to global change. Tree Physiol: 1177–1184

  • Budge K, Leifeld J, Hiltbrunner E, Fuhrer J (2011) Alpine grassland soils contain large proportion of labile carbon but indicate long turnover times. Biogeosciences 8:1911–1923

    Article  CAS  Google Scholar 

  • Butler JL, Bottomley PJ, Griffith SM, Myrold DD (2004) Distribution and turnover of recently fixed photosynthate in ryegrass rhizospheres. Soil Biol Biochem 36:371–382

    Article  CAS  Google Scholar 

  • Chou WW, Silver WL, Jackson RD, Thompson AW, Allen–Diaz B (2008) The sensitivity of annual grassland carbon cycling to the quantity and timing of rainfall. Glob Chang Biol 14:1382–1394

    Article  Google Scholar 

  • Ciais P, Reichstein M, Viovy N, Granier A, Ogée J, Allard V, Aubinet M, Buchmann N, Bernhofer C, Carrara A, Chevallier F, de Noblet N, Friend AD, Friedlingstein P, Grünwald T, Heinesch B, Keronen P, Knohl A, Krinner G, Loustau D, Manca G, Matteucci G, Miglietta F, Ourcival JM, Papale D, Pilegaard K, Rambal S, Seufert G, Soussana JF, Sanz MJ, Schulze ED, Vesala T, Valentini R (2005) Europe–wide reduction in primary productivity caused by the heat and drought in 2003. Nature 437:529–533

    Article  CAS  PubMed  Google Scholar 

  • Ciais P, Soussana JF, Vuichard N, Luyssaert S, Don A, Janssens IA, Piao SL, Dechow R, Lathière J, Maignan F, Wattenbach M, Smith P, Ammann C, Freibauer A, Schulze ED (2010) The greenhouse gas balance of European grasslands. Biogeosci Discus 7:5997–6050

    Article  Google Scholar 

  • Coplen TB (2011) Guidelines and recommended terms for expression of stable–isotope–ratio and gas–ratio measurement results. Rapid Commun Mass Spectrom 25:2538–2560

    CAS  PubMed  Google Scholar 

  • Davenport JR, Thomas RL (1988) Carbon partitioning and rhizodeposition in corn and bromegrass. Can J soil Sci: 693–701

  • Davidson EA, Savage K, Verchot LV, Navarro R (2002) Minimizing artefacts and biases in chamber–based measurements of soil respiration. FLUXNET 2000 Synthesis. Agric For Meteorol 113:21–37

    Article  Google Scholar 

  • Desai AR, Richardson AD, Moffat AM, Kattge J, Hollinger DY, Barr A, Falge E, Noormets A, Papale D, Reichstein M, Stauch VJ (2008) Cross–site evaluation of eddy covariance GPP and RE decomposition techniques. Agric For Meteorol 148:821–838

    Article  Google Scholar 

  • Domanski G, Kuzyakov Y, Siniakina SV, Stahr K (2001) Carbon flows in the rhizosphere of ryegrass (Lolium perenne). J Plant Nutr Soil Sci 164:381–387

    Article  CAS  Google Scholar 

  • Dore S, Hymus GJ, Johnson DP, Hinkle CR, Valentini R, Drake BG (2003) Cross validation of open–top chamber and eddy covariance measurements of ecosystem CO2 exchange in a Florida scrub–oak ecosystem. Glob Chang Biol 9:84–95

    Article  Google Scholar 

  • Drösler M (2005) Trace gas exchange and climatic relevance of bog ecosystems, Southern Germany. PhD–Thesis, Technische Universität München, 179 pp. Online publication: urn:nbn:de:bvb:91–diss20050901–1249431017

  • Eigenmann R, Metzger S, Foken T (2009) Generation of free convection due to changes of the local circulation system. Atmos Chem Phys 9:8587–8600

    Article  CAS  Google Scholar 

  • Falge E, Baldocchi DD, Olson R, Anthoni P, Aubinet M, Bernhofer C, Burba G, Ceulemans R, Clement R, Dolman H, Granier A, Gross P, Grünwald T, Hollinger DY, Jensen N, Katul GG, Keronen P, Kowalski AS, Lai CT, Law BE, Meyers TP, Moncrieff J, Moors E, Munger JW, Pilegaard K, Rannik Ü, Rebmann C, Suyker A, Tenhunen JD, Tu KP, Verma S, Vesala T, Wilson K, Wofsy S (2001) Gap filling strategies for defensible annual sums of net ecosystem exchange. Agric For Meteorol 107:43–69

    Article  Google Scholar 

  • Falge E, Baldocchi D, Tenhunen J, Aubinet M, Bakwin P, Berbigier P, Bernhofer C, Burba G, Clement R, Davis KJ, Elbers JA, Goldstein AH, Grelle A, Granier A, Guðmundsson J, Hollinger D, Kowalski AS, Katul G, Law BE, Malhi Y, Meyers T, Monson RK, Munger J, Oechel W, Paw UKT, Pilegaard K, Rannik Ü, Rebmann C, Suyker A, Valentini R, Wilson K, Wofsy S (2002) Seasonality of ecosystem respiration and gross primary production as derived from FLUXNET measurements. Agric For Meteorol 113:53–74

    Article  Google Scholar 

  • Foken T (2003) Lufthygienisch–bioklimatische Kennzeichnung des oberen Egertales (Fichtelgebirge bis Karlovy Vary). Bayreuther Forum Ökologie: 70 S

  • Foken T, Wichura B (1996) Tools for quality assessment of surface based flux measurements. Agric For Meteorol 78:83–105

    Article  Google Scholar 

  • Foken T, Göckede M, Mauder M, Mahrt L, Amiro BD, Munger JW (2004) Post–field data quality control. In: Lee X, Massman W, Law B (eds) Handbook of micrometeorology: a guide for surface flux measurement and analysis. Kluwer, Dordrecht, pp 181–208

    Google Scholar 

  • Foken T, Leuning R, Oncley SP, Mauder M, Aubinet M (2012) Corrections and data quality. In: Aubinet M, Vesala T, Papale D (eds) Eddy covariance: a practical guide to measurement and data analysis. Springer, Dordrecht, pp 85–131

    Chapter  Google Scholar 

  • Gamnitzer U, Moyes AB, Bowling DR, Schnyder H (2011) Measuring and modelling the isotopic composition of soil respiration: insights from a grassland tracer experiment. Biogeosciences 8:1333–1350

    Article  CAS  Google Scholar 

  • Gavrichkova O (2009) Drivers of soil respiration of root and microbial origin in grasslands. PhD–Thesis, Università degli Studi della Tuscia. http://dspace.unitus.it/bitstream/2067/1104/1/ogavrichkova_tesid.pdf

  • Gilmanov TG, Soussana JF, Aires L, Allard V, Ammann C, Balzarolo M, Barcza Z, Bernhofer C, Campbell CL, Cernusca A, Cescatti A, Clifton–Brown J, Dirks BOM, Dore S, Eugster W, Fuhrer J, Gimeno C, Grünwald T, Haszpra L, Hensen A, Ibrom A, Jacobs AFG, Jones MB, Lanigan G, Laurila T, Lohila A, Manca G, Marcolla B, Nagy Z, Pilegaard K, Pinter K, Pio C, Raschi A, Rogiers N, Sanz MJ, Stefani P, Sutton MA, Tuba Z, Valentini R, Williams ML, Wohlfahrt G (2007) Partitioning European grassland net ecosystem CO2 exchange into gross primary productivity and ecosystem respiration using light response function analysis. Agric Ecosyst Environ 121:93–120

    Article  CAS  Google Scholar 

  • Gilmanov TG, Aires L, Barcza Z, Baron VS, Belelli L, Beringer J, Billesbach D, Bonal D, Bradford J, Ceschia E, Cook D, Corradi C, Frank A, Gianelle D, Gimeno C, Grünwald T, Guo H, Hanan N, Haszpra L, Heilman J, Jacobs AFG, Jones MB, Johnson DA, Kiely G, Li S, Magliulo V, Moors E, Nagy Z, Nasyrov M, Owensby C, Pinter K, Pio C, Reichstein M, Sanz MJ, Scott R, Soussana JF, Stoy PC, Svejcar T, Tuba Z, Zhou G (2010) Productivity, respiration, and light–response parameters of world grassland and agroecosystems derived from flux–tower measurements. Rangel Ecol Manag 63:16–39

    Article  Google Scholar 

  • Göckede M, Rebmann C, Foken T (2004) A combination of quality assessment tools for eddy covariance measurements with footprint modelling for the characterisation of complex sites. Flux and concentration footprints. Agric For Meteorol 127:175–188

    Article  Google Scholar 

  • Göckede M, Markkanen T, Hasager CB, Foken T (2006) Update of a footprint–based approach for the characterization of complex measurement sites. Bound-Layer Meteorol 118:635–655

    Article  Google Scholar 

  • Goulden ML, Munger JW, Fan S, Daube BC, Wofsy S (1996) Measurements of carbon sequestration by long–term eddy covariance: methods and a critical evaluation of accuracy. Glob Chang Biol 2:169–182

    Article  Google Scholar 

  • Gregory PJ, Atwell BJ (1991) The fate of carbon in pulse–labelled crops of barley and wheat. Plant Soil 136:205–213

    Article  CAS  Google Scholar 

  • Gupta SR, Singh JS (1977) Effect of alkali concentration, volume and absorption area on the measurement of soil respiration in a tropical sward. Pedobiologia: 233–239

  • Hafner S, Unteregelsbacher S, Seeber E, Lena B, Xu X, Li X, Guggenberger G, Miehe G, Kuzyakov Y (2012) Effect of grazing on carbon stocks and assimilate partitioning in a Tibetan montane pasture revealed by 13CO2 pulse labeling. Glob Chang Biol 18:528–538

    Article  Google Scholar 

  • Hussain M, Grünwald T, Tenhunen J, Li Y, Mirzae H, Bernhofer C, Otieno D, Dinh N, Schmidt M, Wartinger M, Owen K (2011) Summer drought influence on CO2 and water fluxes of extensively managed grassland in Germany. Agric Ecosyst Environ 141:67–76

    Article  Google Scholar 

  • IPCC (2007) Climate change 2007 – the physical science basis. Contribution of working group I to the fourth assessment report of the IPCC. Cambridge University Press, Cambridge, 996 S

    Google Scholar 

  • IUSS Working Group WRB (2007) World reference base for soil resources 2006 first update 2007. World soil resources reports no. 103. FAO, Rome

    Google Scholar 

  • Janssens IA (2003) Europe’s terrestrial biosphere absorbs 7 to 12 % of European anthropogenic CO2 emissions. Science 300:1538–1542

    Article  CAS  PubMed  Google Scholar 

  • Johnson D, Leake JR, Ostle NJ, Ineson P, Read DJ (2002) In situ 13CO2 pulse–labelling of upland grassland demonstrates a rapid pathway of carbon flux from arbuscular mycorrhizal mycelia to the soil. New Phytol 153:327–334

    Article  CAS  Google Scholar 

  • Jones DL, Nguyen C, Finlay RD (2009) Carbon flow in the rhizosphere: carbon trading at the soil–root interface. Plant Soil 321:5–33

    Article  CAS  Google Scholar 

  • Joos O, Hagedorn F, Heim A, Gilgen AK, Schmidt MWI, Siegwolf RTW, Buchmann N (2010) Summer drought reduces total and litter–derived soil CO2 effluxes in temperate grassland – clues from a 13C litter addition experiment. Biogeosciences 7:1031–1041

    Article  CAS  Google Scholar 

  • Kaštovská E, Šantrůčková H (2007) Fate and dynamics of recently fixed C in pasture plant–soil system under field conditions. Plant Soil 300:61–69

    Article  Google Scholar 

  • Kayler Z, Ganio L, Hauck M, Pypker TG, Sulzman EW, Mix AC, Bond B.J (2010) Bias and uncertainty of δ13CO2 isotopic mixing models. Oecologia: 227–234

  • Keith H, Oades JM, Martin JK (1986) Input of carbon to soil from wheat plants. Soil Biol Biochem 18:445–449

    Article  CAS  Google Scholar 

  • Kirita H (1971) Re–examination of the absorption method of measuring soil respira tion under field conditions III. Combined effect of the covered ground area and the surface area of KOH solution on CO2–absorption rates. J J Ecol: 37–42

  • Knapp AK (2002) Rainfall variability, carbon cycling, and plant species diversity in a mesic grassland. Science 298:2202–2205

    Article  CAS  PubMed  Google Scholar 

  • Kuzyakov Y (2006) Sources of CO2 efflux from soil and review of partitioning methods. Soil Biol Biochem 38:425–448

    Article  CAS  Google Scholar 

  • Kuzyakov Y, Domanski G (2000) Carbon input by plants into the soil. Review. J Plant Nutr Soil Sci: 421–431

  • Kuzyakov Y, Schneckenberger K (2004) Review of estimation of plant rhizodeposition and their contribution to soil organic matter formation. Arch Agron Soil Sci 50:115–132

    Article  Google Scholar 

  • Kuzyakov Y, Kretzschmar A, Stahr K (1999) Contribution of Lolium perenne rhizodeposition to carbon turnover of pasture soil. Plant Soil 213:127–136

    Article  CAS  Google Scholar 

  • Kuzyakov Y, Ehrensberger H, Stahr K (2001) Carbon partitioning and below–ground translocation by Lolium perenne. Soil Biol Biochem 33:61–74

    Article  CAS  Google Scholar 

  • Lasslop G, Reichstein M, Papale D, Richardson AD, Arneth A, Barr A, Stoy PC, Wohlfahrt G (2010) Separation of net ecosystem exchange into assimilation and respiration using a light response curve approach: critical issues and global evaluation. Glob Chang Biol 16:187–208

    Article  Google Scholar 

  • Leake JR, Ostle NJ, Rangel–Castro I, Johnson D (2006) Carbon fluxes from plants through soil organisms determined by field 13CO2 pulse–labelling in an upland grassland. Appl Soil Ecol 33:152–175

    Article  Google Scholar 

  • Leifeld J, Zimmermann M, Fuhrer J, Conen F (2009) Storage and turnover of carbon in grassland soils along an elevation gradient in the Swiss Alps. Glob Chang Biol 15:668–679

    Article  Google Scholar 

  • Li M, Babel W, Tanaka K, Foken T (2013) Note on the applifcation of planar–fit rotation for non–omnidirectional sonic anemometers. Atmos Meas Techn: 221–229

  • Lloyd J, Taylor J (1994) On the temperature dependence of soil respiration. Funct. Ecol.: 315–323

  • Lundegardh H (1921) Ecological studies in the assimilation of certain forest plants and shore plants. Svensk Botaniska Tidskrift: 46–94

  • Luo Y (2007) Terrestrial carbon–cycle feedback to climate warming. Annu Rev Ecol Evol Syst 38:683–712

    Article  Google Scholar 

  • Luo Y, Hui D, Zhang D (2006) Elevated CO2 stimulates net accumulations of carbon and nitrogen in land ecosystems: a meta–analysis. Ecology 87:53–63

    Article  PubMed  Google Scholar 

  • Mauder M, Foken T (2004) Documentation and instruction manual of the eddy covariance software package TK2, Univ. Bayreuth, Abt. Mikrometeorol., ISSN: 1614–89166, 26, 42 pp

  • Mauder M, Foken T (2011) Documentation and instruction manual of the eddy covariance software package TK3. Universität Bayreuth, Abt. Mikrometeorologie, Print, ISSN 1614–8916, Univ. Bayreuth, Abt. Mikrometeorol., ISSN: 1614–89166, 46, 58 pp

  • Mauder M, Liebethal C, Göckede M, Leps J, Beyrich F, Foken T (2006) Processing and quality control of flux data during LITFASS–2003. Bound-Layer Meteorol 121:67–88

    Article  Google Scholar 

  • Mauder M, Oncley SP, Vogt R, Weidinger T, Ribeiro L, Bernhofer C, Foken T, Kohsiek W, Bruin HAR, Liu H (2007) The energy balance experiment EBEX–2000. Part II: intercomparison of eddy–covariance sensors and post–field data processing methods. Bound-Layer Meteorol 123:29–54

    Article  Google Scholar 

  • Mauder M, Foken T, Clement R, Elbers JA, Eugster W, Grünwald T, Heusinkveld B, Kolle O (2008) Quality control of CarboEurope flux data – part 2: inter–comparison of eddy–covariance software. Biogeosciences 5:451–462

    Article  CAS  Google Scholar 

  • McDermitt DK, Welles JM, Eckles RD (1993) Effects of temperature, pressure and water vapor on gas phase infrared absorption by CO2. application note # 116. Li–COR, Lincoln

    Google Scholar 

  • Michaelis L, Menten ML (1913) Die Kinetik der Invertinwirkung, Kinetics of the invertin reaction. Biochemische Zeitschrift: 333–369

  • Miller J, Tans PP (2003) Calculating isotopic fractionation from atmospheric measurements at various scales. Tellus B: 207–214

  • Moffat AM, Papale D, Reichstein M, Hollinger DY, Richardson AD, Barr AG, Beckstein C, Braswell BH, Churkina G, Desai AR, Falge E, Gove JH, Heimann M, Hui D, Jarvis AJ, Kattge J, Noormets A, Stauch VJ (2007) Comprehensive comparison of gap–filling techniques for eddy covariance net carbon fluxes. Agric For Meteorol 147:209–232

    Article  Google Scholar 

  • Moncrieff J, Valentini R, Greco S, Seufert G, Ciccioli P (1997) Trace gas exchange over terrestrial ecosystems: methods and perspectives in micrometeorology. J Exp Bot 48:1133–1142

    Article  CAS  Google Scholar 

  • Nguyen C (2009) Rhizodeposition of organic C by plant: mechanisms and controls. J Sustain Agric: 97–123

  • Ostle NJ, Ineson P, Benham D, Sleep D (2000) Carbon assimilation and turnover in grassland vegetation using an in situ13CO2 pulse labelling system. Rapid Commun Mass Spectrom 14:1345–1350

    Article  CAS  PubMed  Google Scholar 

  • Papale D (2012) Data gap filling. In: Aubinet M, Vesala T, Papale D (eds) Eddy covariance: a practical guide to measurement and data analysis. Springer, Dordrecht, pp 159–172

    Chapter  Google Scholar 

  • Pausch J, Kuzyakov Y (2012) Soil organic carbon decomposition from recently added and older sources estimated by δ13C values of CO2 and organic matter. Soil Biol Biochem: 40–47

  • Rangel–Castro I, Prosser JI, Scrimgeour CM, Smith P, Ostle NJ, Ineson P, Meharg A, Killham K (2004) Carbon flow in an upland grassland: effect of liming on the flux of recently photosynthesized carbon to rhizosphere soil. Glob Chang Biol 10:2100–2108

    Article  Google Scholar 

  • Rannik Ü, Sogachev A, Foken T, Göckede M, Kljun N, Leclerc MY, Vesala T (2012) Footprint analysis. In: Aubinet M, Vesala T, Papale D (eds) Covariance: a practical guide to measurement and data analysis. Springer, Netherlands, pp 211–261

    Chapter  Google Scholar 

  • Rattray EAS, Paterson E, Killham K (1995) Characterisation of the dynamics of C–partitioning within Lolium perenne and to the rhizosphere microbial biomass using 14C pulse chase. Biol Fertil Soils 19:280–286

    Article  Google Scholar 

  • Reichstein M, Falge E, Baldocchi D, Papale D, Aubinet M, Berbigier P, Bernhofer C, Buchmann N, Gilmanov T, Granier A, Grunwald T, Havrankova K, Ilvesniemi H, Janous D, Knohl A, Laurila T, Lohila A, Loustau D, Matteucci G, Meyers T, Miglietta F, Ourcival J, Pumpanen J, Rambal S, Rotenberg E, Sanz M, Tenhunen J, Seufert G, Vaccari F, Vesala T, Yakir D, Valentini R (2005) On the separation of net ecosystem exchange into assimilation and ecosystem respiration: review and improved algorithm. Glob Chang Biol 11:1424–1439

    Article  Google Scholar 

  • Reichstein M, Stoy PC, Desai AR, Lasslop G, Richardson AD (2012) Partitioning of net fluxes. In: Aubinet M, Vesala T, Papale D (eds) Eddy covariance: a practical guide to measurement and data analysis. Partitioning of net fluxes. Springer, Dordrecht, pp 263–289

    Chapter  Google Scholar 

  • Rochette P, Hutchinson GL (2005) Measurement of soil respiration in situ: chamber techniques. In: Hatfield JL, Baker JM (eds) Micrometeorology in agricultural systems. American Society of Agronomy; Crop Science Society of America; Soil Science Society of America, Madison

    Google Scholar 

  • Ruppert J, Mauder M, Thomas C, Lüers J (2006) Innovative gap–filling strategy for annual sums of CO2 net ecosystem exchange. Agric For Meteorol 138:5–18

    Article  Google Scholar 

  • Saggar S, Hedley C (2001) Estimating seasonal and annual carbon inputs, and root decomposition rates in a temperate pasture following field 14C pulse–labelling. Plant Soil 236:91–103

    Article  CAS  Google Scholar 

  • Saggar S, Hedley C, Mackay AD (1997) Partitioning and translocation of photosynthetically fixed 14 C in grazed hill pastures. Biol Fertil Soils 25:152–158

    Article  Google Scholar 

  • Schulze ED, Ciais P, Luyssaert S, Schrumpf M, Janssens IA, Thiruchittampalam B, Theloke J, Saurat M, Bringezu S, Lelieveld J, Lohila A, Rebmann C, Jung M, Bastviken D, Abril G, Grassi G, Leip A, Freibauer A, Kutsch W, Don A, Nieschulze J, Börner A, Gash JH, Dolman AJ (2010) The European carbon balance. Part 4: integration of carbon and other trace–gas fluxes. Glob Chang Biol 16:1451–1469

    Article  Google Scholar 

  • Singh J, Gupta SR (1977) Plant decomposition and soil respiration in terrestrial eco–systems. Bot Rev: 450–511

  • Sokal RR, Rohlf FJ (2008) Biometry, 4th edn. W.H. Freeman, New York

    Google Scholar 

  • Staddon PL (2003) The speed of soil carbon throughput in an upland grassland is increased by liming. J Exp Bot 54:1461–1469

    Article  CAS  PubMed  Google Scholar 

  • Stoy PC, Katul GG, Siqueira MB, Juang J, Novick KA, Uebelherr JM, Oren R (2006) An evaluation of models for partitioning eddy covariance–measured net ecosystem exchange into photosynthesis and respiration. Agric For Meteorol 141:2–18

    Article  Google Scholar 

  • Subke J, Tenhunen JD (2004) Direct measurements of CO2 flux below a spruce forest canopy. Agric For Meteorol 126:157–168

    Article  Google Scholar 

  • Subke J, Vallack HW, Magnusson T, Keel SG, Metcalfe DB, Högberg P, Ineson P (2009) Short–term dynamics of abiotic and biotic soil 13CO2 effluxes after in situ 13CO2 pulse labelling of a boreal pine forest. New Phytol 183:349–357

    Article  CAS  PubMed  Google Scholar 

  • Swinnen J, van Veen JA, Merckx R (1994) 14C pulse–labelling of field–grown spring wheat: an evaluation of its use in rhizosphere carbon budget estimations. Soil Biol Biochem 26:161–170

    Article  Google Scholar 

  • Todorovic C, Nguyen C, Robin C, Guckert A (1999) 14C–assimilate partitioning within white clover plant–soil system: effects of photoperiod/temperature treatments and defoliation. Eur J Agron 11:13–21

    Article  Google Scholar 

  • Unteregelsbacher S, Hafner S, Guggenberger G, Miehe G, Xu X, Liu J, Kuzyakov Y (2011) Response of long–, medium– and short–term processes of the carbon budget to overgrazing–induced crusts in the Tibetan Plateau. Biogeochemistry

  • van Ginkel J, Gorissen A, van Veen JA (1997) Carbon and nitrogen allocation in Lolium perenne in response to elevated atmospheric CO2 with emphasis on soil carbon dynamics. Plant Soil 188:299–308

  • Vesala T, Kljun N, Rannik Ü, Rinne J, Sogachev A, Markkanen T, Sabelfeld K, Foken T, Leclerc M (2008) Flux and concentration footprint modelling: state of the art. Environ Pollut 152:653–666

    Article  CAS  PubMed  Google Scholar 

  • Werth M, Kuzyakov Y (2008) Root-derived carbon in soil respiration and microbial biomass determined by 14C and 13C. Soil Biol Biochem 40(3):625–637. doi:10.1016/j.soilbio.2007.09.022

  • Whipps JM (1990) Carbon economy. In: Lynch JM (ed) The rhizosphere. John Wiley, Chichester, pp 59–97

  • Wichura B (2009) Untersuchungen zum Kohlendioxid–Austausch über einem Fichtenwaldbestand auf der Grundlage von Hyperbolic–Relaxed–Eddy–Accumulation Messungen für das stabile Kohlenstoffisotop 13C und von Wavelletanalysen. Dissertation. Bayreuther Forum Ökologie, Band 114, 324 S

  • Wohlfahrt G, Hammerle A, Haslwanter A, Bahn M, Tappeiner U, Cernusca A (2008) Seasonal and inter–annual variability of the net ecosystem CO2 exchange of a temperate mountain grassland: effects of weather and management. J Geophys Res 113:1–14

    Google Scholar 

  • Wohlfahrt G, Klumpp K, Soussana JF (2012) Eddy covariance measurements over grasslands. In: Aubinet M, Vesala T, Papale D (eds) Eddy covariance: a practical guide to measurement and data analysis. Springer, Dordrecht, pp 333–344

    Chapter  Google Scholar 

  • Wu Y, Tan H, Deng Y, Wu J, Xu X, Wang Y, Tang Y, Higashi T, Cui X (2010) Partitioning pattern of carbon flux in a Kobresia grassland on the Qinghai–Tibetan Plateau revealed by field 13C pulse–labeling. Glob Chang Biol 16:2322–2333

    Article  Google Scholar 

  • Yakir D, Sternberg LSL (2000) The use of stable isotopes to study ecosystem gas exchange. Oecologia 123:297–311

    Article  Google Scholar 

  • Zobitz J, Keener JP, Schnyder H, Bowling DR (2006) Sensitivity analysis and quantification of uncertainty for isotopic mixing relationships in carbon cycle research. Agric For Meteorol: 56–75

Download references

Acknowledgments

The project “Investigation of carbon turnover of grasslands in a northern Bavarian low mountain range under extreme climate conditions” was funded within the joint research project “FORKAST” by the Bavarian State Ministry of Sciences, Research and Arts. The authors wish to acknowledge the support of the participants of the FORKAST project, especially Prof. Dr. Anke Jentsch and Alexander Ulmer for evaluation of biodiversity and species determination on our site. Finally, the authors want to thank Prof. Dr. Gerhard Gebauer and his team of the Laboratory of Isotope Biogeochemistry for the abundance analysis of the carbon isotopes, all colleagues, technicians and research assistants who took part in the field and laboratory work, especially Martin Rimmler, Martin Pannek, Ilse Thaufelder, Johannes Olesch and last but not least Peng Zhao for his support with the flux partitioning model.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M. Riederer or T. Foken.

Additional information

Responsible Editor: Zucong Cai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Riederer, M., Pausch, J., Kuzyakov, Y. et al. Partitioning NEE for absolute C input into various ecosystem pools by combining results from eddy-covariance, atmospheric flux partitioning and 13CO2 pulse labeling. Plant Soil 390, 61–76 (2015). https://doi.org/10.1007/s11104-014-2371-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-014-2371-7

Keywords

Navigation