Plant and Soil

, Volume 389, Issue 1–2, pp 171–183 | Cite as

Impact of species identity and phylogenetic relatedness on biologically-mediated plant-soil feedbacks in a low and a high intensity agroecosystem

  • Zachariah J. Miller
  • Fabian D. Menalled
Regular Article



Plant species-specific effects on soil biota and their impacts on subsequent plant growth, i.e. plant-soil feedbacks (PSFs, henceforth), are major drivers in natural systems but little is known about their role in agroecosystems. We investigated the presence and magnitude of PSFs in two contrasting agricultural settings and tested the importance of species identity and phylogenetic relationships in determining PSFs.


We compared PSFs that developed from an intensified agricultural site and a nearby non-cultivated pasture. Four weed and seven crop species were grown in soil inoculated with either biologically active or sterilized soils from each system. Four crop response species were grown to estimate PSFs.


PSFs were species-specific. The identity of currently- and previously-planted species and their interactions explained over 80 % of the variation in feedbacks. Biota from the intensified agricultural site produced negative feedbacks in three of the four response species. Phylogenetic relationships partially explained PSFs.


PSFs can alter crop growth and may be altered by agricultural practices. The species-specific effect to soil biota should be taken into account when assessing the extent to which crop and weed species could influence subsequent plant growth.


Biologically mediated feedbacks Weed and crop growth Phylogeny Agroecology Crop field Pasture 



We thank Richard Smith and two anonymous reviewers for an insightful review of our work.


  1. Bainard LD, Koch AM, Gordon AM, Klironomos JN (2013) Growth response of crops to soil microbial communities from conventional monocropping and tree-based intercropping systems. Plant Soil 363:345–356. doi: 10.1007/s11104-012-1321-5 CrossRefGoogle Scholar
  2. Baird J, Walley F, Shirtliffe S (2010) Arbuscular mycorrhizal fungi colonization and phosphorus nutrition in organic field pea and lentil. Mycorrhiza 20:541–549. doi: 10.1007/s00572-010-0305-7 CrossRefPubMedGoogle Scholar
  3. Bakker MG, Otto-Hanson L, Lange AJ, Bradeen JM, Kinkel LL (2013) Plant monocultures produce more antagonistic soil Streptomyces communities than high-diversity plant communities. Soil Biol Biochem 65:304–312. doi: 10.1016/j.soilbio.2013.06.007 CrossRefGoogle Scholar
  4. Bever J (2003) Soil community feedback and the coexistence of competitors: conceptual frameworks and empirical tests. New Phytol 157:465–473. doi: 10.1046/j.1469-8137.2003.00714.x CrossRefGoogle Scholar
  5. Brandt A, Seabloom E, Hosseini P (2009) Phylogeny and provenance affect plant-soil feedbacks in invaded California grasslands. Ecology 90:1063–1072. doi: 10.1890/08-0054.1 CrossRefPubMedGoogle Scholar
  6. Brinkman E, Van der Putten W, Bakker E, Verhoeven K (2010) Plant-soil feedback: experimental approaches, statistical analyses and ecological interpretations. J Ecol 98:1063–1073. doi: 10.1111/j.1365-2745.2010.01695.x CrossRefGoogle Scholar
  7. Bryla D, Duniway J (1997) Growth, phosphorus uptake, and water relations of safflower and wheat infected with an arbuscular mycorrhizal fungus. New Phytol 136:581–590. doi: 10.1046/j.1469-8137.1997.00780.x CrossRefGoogle Scholar
  8. Callaway R, Thelen G, Rodriguez A, Holben W (2004) Soil biota and exotic plant invasion. Nature 427:731–733. doi: 10.1038/nature02322 CrossRefPubMedGoogle Scholar
  9. Clark R, Baligar V, Zobel R (2005) Response of mycorrhizal switchgrass to phosphorus fractions in acidic soil. Commun Soil Sci Plant Anal 36:1337–1359. doi: 10.1081/CSS-200056950 CrossRefGoogle Scholar
  10. Curl EA (1963) Control of plant diseases by crop rotation. Bot Rev 29:413–479. doi: 10.1007/bf02860813 CrossRefGoogle Scholar
  11. Daehler C (2001) Darwin’s naturalization hypothesis revisited. Am Nat 158:324–330. doi: 10.1086/321316 CrossRefPubMedGoogle Scholar
  12. Development Core Team R (2008) R: a language and environment for statistical computing. R Foundation for Statistical Computing, ViennaGoogle Scholar
  13. de Vries F, Thebault E, Liiri M, Birkhofer K, Tsiafouli M, Bjornlund L, Jorgensen H, Brady M, Christensen S, de Ruiter P, d’Hertefeldt T, Frouz J, Hedlund K, Hemerik L, Hol W, Hotes S, Mortimer S, Setala H, Sgardelis S, Uteseny K, van der Putten W, Wolters V, Bardgett R (2013) Soil food web properties explain ecosystem services across European land use systems. Proc Natl Acad Sci U S A 110:14296–14301. doi: 10.1073/pnas.1305198110 CrossRefPubMedCentralPubMedGoogle Scholar
  14. Diez JM, Dickie I, Edwards G, Hulme PE, Sullivan JJ, Duncan RP (2010) Negative soil feedbacks accumulate over time for non-native plant species. Ecol Lett 13:803–809. doi: 10.1111/j.1461-0248.2010.01474.x CrossRefPubMedGoogle Scholar
  15. Drijber RA, Doran JW, Parkhurst AM, Lyon DJ (2000) Changes in soil microbial community structure with tillage under long-term wheat-fallow management. Soil Biol Biochem 32:1419–1430. doi: 10.1016/s0038-0717(00)00060-2 CrossRefGoogle Scholar
  16. Ehrenfeld JG, Ravit B, Elgersma K (2005) Feedback in the plant-soil system. Annual Review of Environment and Resources. Annual Reviews, Palo Alto.Google Scholar
  17. Ehrmann J, Ritz K (2014) Plant: soil interactions in temperate multi-cropping production systems. Plant Soil 376:1–29. doi: 10.1007/s11104-013-1921-8 CrossRefGoogle Scholar
  18. Furhrer J, Grimm A, Tschannenn W, Shariatmadari H (1992) The response of spring wheat (Triticum aestivum L.) to ozone at higher elevations. 2. Changes in yield, yield components and grain quality in response to ozone flux. New Phytol 121:211–219. doi: 10.1111/j.1469-8137.1992.tb01106.x CrossRefGoogle Scholar
  19. Gilbert G, Webb C (2007) Phylogenetic signal in plant pathogen-host range. Proc Natl Acad Sci U S A 104:4979–4983. doi: 10.1073/pnas.0607968104 CrossRefPubMedCentralPubMedGoogle Scholar
  20. Glenn M, Chrew F, Williams P (1985) Hyphal penetration of Brassica (Crucifera) roots by vesicular-arbuscular micorrhizal fungus. New Phytol 99:463–472. doi: 10.1111/j.1469-8137.1985.tb03673.x CrossRefGoogle Scholar
  21. Hawkes CV, Kivlin SN, Du J, Eviner VT (2013) The temporal development and additivity of plant-soil feedback in perennial grasses. Plant Soil 369:141–150. doi: 10.1007/s11104-012-1557-0 CrossRefGoogle Scholar
  22. Herms DA, Mattson WJ (1992) The dilemma of plants—to grow or defend. Q Rev Biol 67:283–335. doi: 10.1086/417659 CrossRefGoogle Scholar
  23. Hol W, de Boer W, ten Hooven F, van der Putten W (2013) Competition Increases Sensitivity of Wheat (Triticum aestivum) to Biotic Plant-Soil Feedback. Plos One 8. doi: 10.1371/journal.pone.0066085
  24. Hwang S, Ahmed H, Goosen B, Kutcher H, Brandt S, Chang S, Turnbull G (2009) Effect of crop rotation on the soil pathogen dynamics and canola seedling establishment. Plant Pathol J 8:106–112. doi: 10.3923/ppj.2009.106.112 CrossRefGoogle Scholar
  25. Kardol P, Bezemer T, van der Putten W (2006) Temporal variation in plant-soil feedback controls succession. Ecol Lett 9:1080–1088. doi: 10.1111/j.1461-0248.2006.00953.x CrossRefPubMedGoogle Scholar
  26. Klironomos J (2002) Feedback with soil biota contributes to plant rarity and invasiveness in communities. Nature 417:67–70. doi: 10.1038/417067a CrossRefPubMedGoogle Scholar
  27. Kulmatiski A, Beard KH (2011) Long-term plant growth legacies overwhelm short-term plant growth effects on soil microbial community structure. Soil Biol Biochem 43:823–830. doi: 10.1016/j.soilbio.2010.12.018 CrossRefGoogle Scholar
  28. Kulmatiski A, Beard KH, Stevens JR, Cobbold SM (2008) Plant-soil feedbacks: a meta-analytical review. Ecol Lett 11:980–992. doi: 10.1111/j.1461-0248.2008.01209.x CrossRefPubMedGoogle Scholar
  29. Menalled F, Gross K, Hammond M (2001) Weed aboveground and seedbank community responses to agricultural management systems. Ecol Appl 11:1586–1601. doi: 10.2307/3061080 CrossRefGoogle Scholar
  30. Mokany K, Ash J (2008) Are traits measured on pot grown plants representative of those in natural communities? J Veg Sci 19:119–126. doi: 10.3170/2007-8-18340 CrossRefGoogle Scholar
  31. Nielsen D, Unger P, Miller P (2005) Efficient water use in dryland cropping systems in the great plains. Agron J 97:364–372CrossRefGoogle Scholar
  32. Pagano E, Cela S, Maddonni GA, Otegui ME (2007) Intra-specific competition in maize: Ear development, flowering dynamics and kernel set of early-established plant hierarchies. Field Crop Res 102:198–209. doi: 10.1016/j.fcr.2007.03.013 CrossRefGoogle Scholar
  33. Postma-Blaauw M, de Goede R, Bloem J, Faber J, Brussaard L (2010) Soil biota community structure and abundance under agricultural intensification and extensification. Ecology 91:460–473. doi: 10.1890/09-0666.1 CrossRefPubMedGoogle Scholar
  34. Reinhart K, Wilson G, Rinella M (2012) Predicting plant responses to mycorrhizae: integrating evolutionary history and plant traits. Ecol Lett 15:689–695. doi: 10.1111/j.1461-0248.2012.01786.x CrossRefPubMedGoogle Scholar
  35. Reynolds H, Packer A, Bever J, Clay K (2003) Grassroots ecology: plant-microbe-soil interactions as drivers of plant community structure and dynamics. Ecology 84:2281–2291. doi: 10.1890/02-0298 CrossRefGoogle Scholar
  36. Robertson G, Swinton S (2005) Reconciling agricultural productivity and environmental integrity: a grand challenge for agriculture. Front Ecol Environ 3:38–46. doi: 10.1890/1540-9295(2005)003[0038:RAPAEI]2.0.CO;2 CrossRefGoogle Scholar
  37. Ryan MH, Graham JH (2002) Is there a role for arbuscular mycorrhizal fungi in production agriculture? Plant Soil 244:263–271. doi: 10.1023/a:1020207631893 CrossRefGoogle Scholar
  38. Sainju UM, Lenssen AW, Goosey HB, Snyder E, Hatfield PG (2010) Dryland soil carbon and nitrogen influenced by sheep grazing in the wheat-fallow system. Agron J 102:1553–1561. doi: 10.2134/agronj2010.0216 CrossRefGoogle Scholar
  39. Smith R, Ryan M, Menalled F (2011) Direct and indirect impacts of weed management practices on soil quality, chap 18. In: Hatfield J, Sauer J (eds) Soil management: building a stable base for agriculture. American Soc Agron and Soil Sci Soc of America, WI, p 275–286Google Scholar
  40. Stevens P (2014) Angiosperm Phylogeny Website. Available on line: Accessed 24 April 2014
  41. Tanaka DL, Anderson RL, Rao SC (2005) Crop sequencing to improve use of precipitation and synergize crop growth. Agron J 97:385–390CrossRefGoogle Scholar
  42. Trenbath BR (1993) Intercropping for the management of pests and diseases. Field Crop Res 34:381–405. doi: 10.1016/0378-4290(93)90123-5 CrossRefGoogle Scholar
  43. van der Putten W, Bardgett R, Bever J, Bezemer T, Casper B, Fukami T, Kardol P, Klironomos J, Kulmatiski A, Schweitzer J, Suding K, Van de Voorde T, Wardle D (2013) Plant-soil feedbacks: the past, the present and future challenges. J Ecol 101:265–276. doi: 10.1111/1365-2745.12054 CrossRefGoogle Scholar
  44. van Groenigen K, Bloem J, Bååth E, Boeckx P, Rousk J, Bode S, Forristal D, Jones M (2010) Abundance, production and stabilization of microbial biomass under conventional and reduced tillage. Soil Biol Biochem 42:48–55. doi: 10.1016/j.soilbio.2009.09.023 CrossRefGoogle Scholar
  45. Vicentini A, Barber JC, Aliscioni SS, Giussani LM, Kellogg EA (2008) The age of the grasses and clusters of origins of C(4) photosynthesis. Glob Chang Biol 14:2963–2977. doi: 10.1111/j.1365-2486.2008.01688.x CrossRefGoogle Scholar
  46. Vitta J, Satorre E (1999) Validation of a weed: crop competition model. Weed Res 39:259–269. doi: 10.1046/j.1365-3180.1999.00142.x CrossRefGoogle Scholar
  47. Wolfe B, Klironomos J (2005) Breaking new ground: soil communities and exotic plant invasion. Bioscience 55:477–487. doi: 10.1641/0006-3568(2005)055[0477:BNGSCA]2.0.CO;2 CrossRefGoogle Scholar
  48. Xavier L, Germida J (2002) Response of lentil under controlled conditions to co-inoculation with arbuscular mycorrhizal fungi and rhizobia varying in efficacy. Soil Biol Biochem 34:181–188. doi: 10.1016/S0038-0717(01)00165-1 CrossRefGoogle Scholar
  49. Zimdahl RL (2004) Weed-crop competition: a review. Blackwell Pub, Professional, AmesCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Western Ag Research CenterMontana State UniversityCorvallisUSA
  2. 2.Department of Land Resources and Environmental SciencesMontana State UniversityBozemanUSA

Personalised recommendations