Skip to main content

Advertisement

Log in

Soil water uptake and root distribution of different perennial and annual bioenergy crops

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Background and aims

Bioenergy crops are expected to provide biomass as a replacement for fossil resources, but their impact on the water cycle is still under question. This study aimed at both quantifying the ability of bioenergy crops to use soil water and analysing the relationship between their root systems and soil water uptake.

Methods

Water content was monitored continuously for 7 years (2007–2013) under perennial (Miscanthus × giganteus and Panicum virgatum), semi-perennial (Festuca arundinacea and Medicago sativa) and annual (Sorghum bicolor and × Triticosecale) bioenergy crops. Root distribution was characterized in 2010 down to 3 m depth. Soil water deficit (SWD) was calculated as the difference between field capacity and actual water content.

Results

Maximal SWD (0–210 cm) during the growing season was higher for semi-perennials, despite a lower biomass production than perennials. Water capture in deep soil layers was greater under perennials and semi-perennials than under annual crops. A curvilinear asymptotic relationship was found between water capture and root density and described by a model the parameters of which varied between crops, indicating a variable soil water capture for a given root density.

Conclusions

This study provides quantitative information required to simulate the impact of bioenergy crops on drainage and aquifer loading.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

Abbreviations

I:

Irrigation

P:

Precipitation

PET:

Potential evapotranspiration

PWC:

Proportional water capture

RID:

Root intersection density

RLD:

Root length density

RMSE:

Root mean square error

SWC:

Soil water content

SWD:

Soil water deficit

References

  • Amougou N, Bertrand I, Cadoux S, Recous S (2012) Miscanthus x giganteus leaf senescence, decomposition and C and N inputs to soil. GCB Bioenergy 4:698–707. doi:10.1111/j.1757-1707.2012.01192.x

    Article  CAS  Google Scholar 

  • Beale CV, Morison JIL, Long SP (1999) Water use efficiency of C 4 perennial grasses in a temperate climate. Agric For Meteorol 96:103–115. doi:10.1016/s0168-1923(99)00042-8

    Article  Google Scholar 

  • Bentsen N, Felby C (2012) Biomass for energy in the European Union—a review of bioenergy resource assessments. Biotechnol Biofuels 5:25

    Article  PubMed Central  PubMed  Google Scholar 

  • Beudez N, Doussan C, Lefeuve-Mesgouez G, Mesgouez A (2013) Influence of three root spatial arrangement on soil water flow and uptake. Results from an explicit and an equivalent, upscaled, model. In: Romano N, Durso G, Severino G, Chirico GB, Palladino M (eds) Four decades of progress in monitoring and modeling of processes in the soil-plant-atmosphere system: applications and challenges. Elsevier Science Bv, Amsterdam

    Google Scholar 

  • Cadoux S, Ferchaud F, Demay C, Boizard H, Machet J-M, Fourdinier E, Preudhomme M, Chabbert B, Gosse G, Mary B (2014) Implications of productivity and nutrient requirements on greenhouse gas balance of annual and perennial bioenergy crops. GCB Bioenergy 6:425–438. doi:10.1111/gcbb.12065

    Article  CAS  Google Scholar 

  • Campbell CA, Lafond GP, Zentner RP, Jame YW (1994) Nitrate leaching in a Udic Haploboroll as influenced by fertilization and legumes. J Environ Qual 23:195–201

    Article  Google Scholar 

  • Chopart JL, Siband P (1999) Development and validation of a model to describe root length density of maize from root counts on soil profiles. Plant Soil 214:61–74. doi:10.1023/a:1004658918388

    Article  CAS  Google Scholar 

  • Chopart J-L, Rodrigues S, Carvalho de Azevedo M, Conti Medina C (2008) Estimating sugarcane root length density through root mapping and orientation modelling. Plant Soil 313:101–112. doi:10.1007/s11104-008-9683-4

    Article  CAS  Google Scholar 

  • Chum H, Faaij A, Moreira J, Berndes G, Dhamija P, Dong H, Gabrielle B, Goss Eng A, Lucht W, Mapako M, Masera Cerutti O, McIntyre T, Minowa T, Pingoud K (2011) Bioenergy. In: Edenhofer O, Pichs-Madruga R, Sokona Y, Seyboth K, Matschoss P, Kadner S, Zwickel T, Eickemeier P, Hansen G, Schlömer S, von Stechow C (eds) IPCC special report on renewable energy sources and climate change mitigation. Cambridge University Press, Cambridge

    Google Scholar 

  • Dardanelli JL, Bachmeier OA, Sereno R, Gil R (1997) Rooting depth and soil water extraction patterns of different crops in a silty loam Haplustoll. Field Crop Res 54:29–38. doi:10.1016/s0378-4290(97)00017-8

    Article  Google Scholar 

  • Dardanelli JL, Ritchie JT, Calmon M, Andriani JM, Collino DJ (2004) An empirical model for root water uptake. Field Crop Res 87:59–71. doi:10.1016/j.fcr.2003.09.008

    Article  Google Scholar 

  • Dohleman FG, Heaton EA, Arundale RA, Long SP (2012) Seasonal dynamics of above- and below-ground biomass and nitrogen partitioning in Miscanthus × giganteus and Panicum virgatum across three growing seasons. GCB Bioenergy 4:534–544. doi:10.1111/j.1757-1707.2011.01153.x

    Article  CAS  Google Scholar 

  • Don A, Osborne B, Hastings A, Skiba U, Carter MS, Drewer J, Flessa H, Freibauer A, Hyvonen N, Jones MB, Lanigan GJ, Mander U, Monti A, Djomo SN, Valentine J, Walter K, Zegada-Lizarazu W, Zenone T (2011) Land-use change to bioenergy production in Europe: implications for the greenhouse gas balance and soil carbon. GCB Bioenergy 4:372–391. doi:10.1111/j.1757-1707.2011.01116.x

    Article  Google Scholar 

  • Dusserre J, Audebert A, Radanielson A, Chopart JL (2009) Towards a simple generic model for upland rice root length density estimation from root intersections on soil profile. Plant Soil 325:277–288. doi:10.1007/s11104-009-9978-0

    Article  CAS  Google Scholar 

  • Entz MW, Bullied WJ, Forster DA, Gulden R, Vessey JK (2001) Extraction of subsoil nitrogen by alfalfa, alfalfa-wheat, and perennial grass systems. Agron J 93:495–503

    Article  Google Scholar 

  • Ferchaud F, Vitte G, Mary B (2012) Belowground biomass and root distribution of two perennial biomass crops in a deep loamy soil. 4th International Congress EUROSOIL 2012. ECSSS, Bari

    Google Scholar 

  • Finch JW, Riche A (2008) Soil water deficits and evaporation rates associated with Miscanthus in England. Asp Appl Biol 90:295–302

    Google Scholar 

  • Garrigues E, Doussan C, Pierret A (2006) Water uptake by plant roots: I—formation and propagation of a water extraction front in mature root systems as evidenced by 2D light transmission imaging. Plant Soil 283:83–98. doi:10.1007/s11104-004-7903-0

    Article  CAS  Google Scholar 

  • Gregory PJ (2006) Roots, rhizosphere and soil: the route to a better understanding of soil science? Eur J Soil Sci 57:2–12. doi:10.1111/j.1365-2389.2005.00778.x

    Article  Google Scholar 

  • Heaton EA, Dohleman FG, Miguez AF, Juvik JA, Lozovaya V, Widholm J, Zabotina OA, McIsaac GF, David MB, Voigt TB, Boersma NN, Long SP (2010) Miscanthus: a promising biomass crop. In: Kader JC, Delseny M (eds) Advances in botanical research, vol 56. Academic Press Ltd-Elsevier Science Ltd, London

    Google Scholar 

  • Hickman GC, Vanloocke A, Dohleman FG, Bernacchi CJ (2010) A comparison of canopy evapotranspiration for maize and two perennial grasses identified as potential bioenergy crops. GCB Bioenergy 2:157–168

    Google Scholar 

  • Hoad SP, Russell G, Lucas ME, Bingham IJ (2001) The management of wheat, barley, and oat root systems. Adv Agron 74:193–246. doi:10.1016/s0065-2113(01)74034-5

    Article  CAS  Google Scholar 

  • IPCC (2011) Summary for policymakers. In: Edenhofer O, Pichs-Madruga R, Sokona Y, Seyboth K, Matschoss P, Kadner S, Zwickel T, Eickemeier P, Hansen G, Schlömer S, von Stechow C (eds) IPCC special report on renewable energy sources and climate change mitigation. Cambridge University Press, Cambridge

    Google Scholar 

  • IUSS Working Group WRB (2006) World reference base for soil resources 2006. World Soil Resources Reports 103. FAO, Rome

    Google Scholar 

  • Jackson RB, Sperry JS, Dawson TE (2000) Root water uptake and transport: using physiological processes in global predictions. Trends Plant Sci 5:482–488. doi:10.1016/s1360-1385(00)01766-0

    Article  CAS  PubMed  Google Scholar 

  • Karp A, Shield I (2008) Bioenergy from plants and the sustainable yield challenge. New Phytol 179:15–32. doi:10.1111/j.1469-8137.2008.02432.x

    Article  PubMed  Google Scholar 

  • King J, Gay A, Sylvester-Bradley R, Bingham I, Foulkes J, Gregory P, Robinson D (2003) Modelling cereal root systems for water and nitrogen capture: towards an economic optimum. Ann Bot 91:383–390. doi:10.1093/aob/mcg033

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Le PVV, Kumar P, Drewry DT (2011) Implications for the hydrologic cycle under climate change due to the expansion of bioenergy crops in the Midwestern United States. Proc Natl Acad Sci 108:15085–15090. doi:10.1073/pnas.1107177108

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lewandowski I, Scurlock JMO, Lindvall E, Christou M (2003) The development and current status of perennial rhizomatous grasses as energy crops in the US and Europe. Biomass Bioenergy 25:335–361. doi:10.1016/s0961-9534(03)00030-8

    Article  Google Scholar 

  • Ma Z, Wood CW, Bransby DI (2000) Impacts of soil management on root characteristics of switchgrass. Biomass Bioenergy 18:105–112. doi:10.1016/s0961-9534(99)00076-8

    Article  CAS  Google Scholar 

  • McIsaac GF, David MB, Mitchell CA (2010) Miscanthus and switchgrass production in Central Illinois: impacts on hydrology and inorganic nitrogen leaching. J Environ Qual 39:1790–1799. doi:10.2134/jeq2009.0497

    Article  PubMed  Google Scholar 

  • Monti A, Zatta A (2009) Root distribution and soil moisture retrieval in perennial and annual energy crops in Northern Italy. Agric Ecosyst Environ 132:252–259. doi:10.1016/j.agee.2009.04.007

    Article  Google Scholar 

  • Neukirchen D, Himken M, Lammel J, Czyionka-Krause U, Olfs HW (1999) Spatial and temporal distribution of the root system and root nutrient content of an established Miscanthus crop. Eur J Agron 11:301–309

    Article  Google Scholar 

  • Nippert JB, Wieme RA, Ocheltree TW, Craine JM (2012) Root characteristics of C-4 grasses limit reliance on deep soil water in tallgrass prairie. Plant Soil 355:385–394. doi:10.1007/s11104-011-1112-4

    Article  CAS  Google Scholar 

  • Powlson DS, Riche AB, Shield I (2005) Biofuels and other approaches for decreasing fossil fuel emissions from agriculture. Ann Appl Biol 146:193–201. doi:10.1111/j.1744-7348.2005.040056.x

    Article  CAS  Google Scholar 

  • R Core Team (2014) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, URL http://www.R-project.org/

    Google Scholar 

  • Ragauskas AJ, Williams CK, Davison BH, Britovsek G, Cairney J, Eckert CA, Frederick WJ Jr, Hallett JP, Leak DJ, Liotta CL, Mielenz JR, Murphy R, Templer R, Tschaplinski T (2006) The path forward for biofuels and biomaterials. Science (Washington) 311:484–489. doi:10.1126/science.1114736

    Article  CAS  Google Scholar 

  • Riche A, Christian DG (2001) Estimates of rhizome weight of Miscanthus with time and rooting depth compared to switchgrass. Asp Appl Biol 65:147–152

    Google Scholar 

  • Robertson MJ, Fukai S, Ludlow MM, Hammer GL (1993) Water extraction by grain-sorghum in a subhumid environment.1. Analysis of the water extraction pattern. Field Crop Res 33:81–97. doi:10.1016/0378-4290(93)90095-5

    Article  Google Scholar 

  • Rowe RL, Street NR, Taylor G (2009) Identifying potential environmental impacts of large-scale deployment of dedicated bioenergy crops in the UK. Renew Sustain Energy Rev 13:260–279. doi:10.1016/j.rser.2007.07.008

    Article  Google Scholar 

  • Rudiger C, Western AW, Walker JP, Smith AB, Kalma JD, Willgoose GR (2010) Towards a general equation for frequency domain reflectometers. J Hydrol 383:319–329. doi:10.1016/j.jhydrol.2009.12.046

    Article  Google Scholar 

  • Sanderson MA, Adler PR (2008) Perennial forages as second generation bioenergy crops. Int J Mol Sci 9:768–788. doi:10.3390/ijms9050768

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Somerville C, Youngs H, Taylor C, Davis SC, Long SP (2010) Feedstocks for lignocellulosic biofuels. Science 329:790–792

    Article  CAS  PubMed  Google Scholar 

  • Strullu L, Cadoux S, Preudhomme M, Jeuffroy MH, Beaudoin N (2011) Biomass production and nitrogen accumulation and remobilisation by Miscanthus x giganteus as influenced by nitrogen stocks in belowground organs. Field Crop Res 121:381–391. doi:10.1016/j.fcr.2011.01.005

    Article  Google Scholar 

  • Tardieu F (1988) Analysis of the spatial variability of maize root density—I. Effect of wheel compaction on the spatial arrangement of roots. Plant Soil 107:259–266

    Article  Google Scholar 

  • van der Weijde T, Kamei CLA, Torres AF, Vermerris W, Dolstra O, Visser RGF, Trindade LM (2013) The potential of C4 grasses for cellulosic biofuel production. Front Plant Sci 4:107. doi:10.3389/fpls.2013.00107

    PubMed Central  PubMed  Google Scholar 

  • Vanloocke A, Bernacchi CJ, Twine TE (2010) The impacts of Miscanthus x giganteus production on the Midwest US hydrologic cycle. GCB Bioenergy 2:180–191. doi:10.1111/j.1757-1707.2010.01053.x

    Google Scholar 

  • Zegada-Lizarazu W, Monti A (2011) Energy crops in rotation. A review. Biomass Bioenergy 35:12–25. doi:10.1016/j.biombioe.2010.08.001

    Article  Google Scholar 

  • Zhang X, Pei D, Chen S (2004) Root growth and soil water utilization of winter wheat in the North China Plain. Hydrol Process 18:2275–2287. doi:10.1002/hyp.5533

    Article  Google Scholar 

Download references

Acknowledgments

We are grateful to F. Mahu for the maintenance of the soil moisture and temperature probes, J. Duval for the database development, T. Laemmel for his help in data processing and L. Le Guen, E. Mignot, C. Demay and F. Millon for their technical assistance. This work was supported by the French National Research Agency (ANR) under the project “Regix” and by BPI-France under the project “Futurol”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabien Ferchaud.

Additional information

Responsible Editor: Peter J. Gregory .

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ferchaud, F., Vitte, G., Bornet, F. et al. Soil water uptake and root distribution of different perennial and annual bioenergy crops. Plant Soil 388, 307–322 (2015). https://doi.org/10.1007/s11104-014-2335-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-014-2335-y

Keywords