Abstract
Background and aims
Bioenergy crops are expected to provide biomass as a replacement for fossil resources, but their impact on the water cycle is still under question. This study aimed at both quantifying the ability of bioenergy crops to use soil water and analysing the relationship between their root systems and soil water uptake.
Methods
Water content was monitored continuously for 7 years (2007–2013) under perennial (Miscanthus × giganteus and Panicum virgatum), semi-perennial (Festuca arundinacea and Medicago sativa) and annual (Sorghum bicolor and × Triticosecale) bioenergy crops. Root distribution was characterized in 2010 down to 3 m depth. Soil water deficit (SWD) was calculated as the difference between field capacity and actual water content.
Results
Maximal SWD (0–210 cm) during the growing season was higher for semi-perennials, despite a lower biomass production than perennials. Water capture in deep soil layers was greater under perennials and semi-perennials than under annual crops. A curvilinear asymptotic relationship was found between water capture and root density and described by a model the parameters of which varied between crops, indicating a variable soil water capture for a given root density.
Conclusions
This study provides quantitative information required to simulate the impact of bioenergy crops on drainage and aquifer loading.







Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.Abbreviations
- I:
-
Irrigation
- P:
-
Precipitation
- PET:
-
Potential evapotranspiration
- PWC:
-
Proportional water capture
- RID:
-
Root intersection density
- RLD:
-
Root length density
- RMSE:
-
Root mean square error
- SWC:
-
Soil water content
- SWD:
-
Soil water deficit
References
Amougou N, Bertrand I, Cadoux S, Recous S (2012) Miscanthus x giganteus leaf senescence, decomposition and C and N inputs to soil. GCB Bioenergy 4:698–707. doi:10.1111/j.1757-1707.2012.01192.x
Beale CV, Morison JIL, Long SP (1999) Water use efficiency of C 4 perennial grasses in a temperate climate. Agric For Meteorol 96:103–115. doi:10.1016/s0168-1923(99)00042-8
Bentsen N, Felby C (2012) Biomass for energy in the European Union—a review of bioenergy resource assessments. Biotechnol Biofuels 5:25
Beudez N, Doussan C, Lefeuve-Mesgouez G, Mesgouez A (2013) Influence of three root spatial arrangement on soil water flow and uptake. Results from an explicit and an equivalent, upscaled, model. In: Romano N, Durso G, Severino G, Chirico GB, Palladino M (eds) Four decades of progress in monitoring and modeling of processes in the soil-plant-atmosphere system: applications and challenges. Elsevier Science Bv, Amsterdam
Cadoux S, Ferchaud F, Demay C, Boizard H, Machet J-M, Fourdinier E, Preudhomme M, Chabbert B, Gosse G, Mary B (2014) Implications of productivity and nutrient requirements on greenhouse gas balance of annual and perennial bioenergy crops. GCB Bioenergy 6:425–438. doi:10.1111/gcbb.12065
Campbell CA, Lafond GP, Zentner RP, Jame YW (1994) Nitrate leaching in a Udic Haploboroll as influenced by fertilization and legumes. J Environ Qual 23:195–201
Chopart JL, Siband P (1999) Development and validation of a model to describe root length density of maize from root counts on soil profiles. Plant Soil 214:61–74. doi:10.1023/a:1004658918388
Chopart J-L, Rodrigues S, Carvalho de Azevedo M, Conti Medina C (2008) Estimating sugarcane root length density through root mapping and orientation modelling. Plant Soil 313:101–112. doi:10.1007/s11104-008-9683-4
Chum H, Faaij A, Moreira J, Berndes G, Dhamija P, Dong H, Gabrielle B, Goss Eng A, Lucht W, Mapako M, Masera Cerutti O, McIntyre T, Minowa T, Pingoud K (2011) Bioenergy. In: Edenhofer O, Pichs-Madruga R, Sokona Y, Seyboth K, Matschoss P, Kadner S, Zwickel T, Eickemeier P, Hansen G, Schlömer S, von Stechow C (eds) IPCC special report on renewable energy sources and climate change mitigation. Cambridge University Press, Cambridge
Dardanelli JL, Bachmeier OA, Sereno R, Gil R (1997) Rooting depth and soil water extraction patterns of different crops in a silty loam Haplustoll. Field Crop Res 54:29–38. doi:10.1016/s0378-4290(97)00017-8
Dardanelli JL, Ritchie JT, Calmon M, Andriani JM, Collino DJ (2004) An empirical model for root water uptake. Field Crop Res 87:59–71. doi:10.1016/j.fcr.2003.09.008
Dohleman FG, Heaton EA, Arundale RA, Long SP (2012) Seasonal dynamics of above- and below-ground biomass and nitrogen partitioning in Miscanthus × giganteus and Panicum virgatum across three growing seasons. GCB Bioenergy 4:534–544. doi:10.1111/j.1757-1707.2011.01153.x
Don A, Osborne B, Hastings A, Skiba U, Carter MS, Drewer J, Flessa H, Freibauer A, Hyvonen N, Jones MB, Lanigan GJ, Mander U, Monti A, Djomo SN, Valentine J, Walter K, Zegada-Lizarazu W, Zenone T (2011) Land-use change to bioenergy production in Europe: implications for the greenhouse gas balance and soil carbon. GCB Bioenergy 4:372–391. doi:10.1111/j.1757-1707.2011.01116.x
Dusserre J, Audebert A, Radanielson A, Chopart JL (2009) Towards a simple generic model for upland rice root length density estimation from root intersections on soil profile. Plant Soil 325:277–288. doi:10.1007/s11104-009-9978-0
Entz MW, Bullied WJ, Forster DA, Gulden R, Vessey JK (2001) Extraction of subsoil nitrogen by alfalfa, alfalfa-wheat, and perennial grass systems. Agron J 93:495–503
Ferchaud F, Vitte G, Mary B (2012) Belowground biomass and root distribution of two perennial biomass crops in a deep loamy soil. 4th International Congress EUROSOIL 2012. ECSSS, Bari
Finch JW, Riche A (2008) Soil water deficits and evaporation rates associated with Miscanthus in England. Asp Appl Biol 90:295–302
Garrigues E, Doussan C, Pierret A (2006) Water uptake by plant roots: I—formation and propagation of a water extraction front in mature root systems as evidenced by 2D light transmission imaging. Plant Soil 283:83–98. doi:10.1007/s11104-004-7903-0
Gregory PJ (2006) Roots, rhizosphere and soil: the route to a better understanding of soil science? Eur J Soil Sci 57:2–12. doi:10.1111/j.1365-2389.2005.00778.x
Heaton EA, Dohleman FG, Miguez AF, Juvik JA, Lozovaya V, Widholm J, Zabotina OA, McIsaac GF, David MB, Voigt TB, Boersma NN, Long SP (2010) Miscanthus: a promising biomass crop. In: Kader JC, Delseny M (eds) Advances in botanical research, vol 56. Academic Press Ltd-Elsevier Science Ltd, London
Hickman GC, Vanloocke A, Dohleman FG, Bernacchi CJ (2010) A comparison of canopy evapotranspiration for maize and two perennial grasses identified as potential bioenergy crops. GCB Bioenergy 2:157–168
Hoad SP, Russell G, Lucas ME, Bingham IJ (2001) The management of wheat, barley, and oat root systems. Adv Agron 74:193–246. doi:10.1016/s0065-2113(01)74034-5
IPCC (2011) Summary for policymakers. In: Edenhofer O, Pichs-Madruga R, Sokona Y, Seyboth K, Matschoss P, Kadner S, Zwickel T, Eickemeier P, Hansen G, Schlömer S, von Stechow C (eds) IPCC special report on renewable energy sources and climate change mitigation. Cambridge University Press, Cambridge
IUSS Working Group WRB (2006) World reference base for soil resources 2006. World Soil Resources Reports 103. FAO, Rome
Jackson RB, Sperry JS, Dawson TE (2000) Root water uptake and transport: using physiological processes in global predictions. Trends Plant Sci 5:482–488. doi:10.1016/s1360-1385(00)01766-0
Karp A, Shield I (2008) Bioenergy from plants and the sustainable yield challenge. New Phytol 179:15–32. doi:10.1111/j.1469-8137.2008.02432.x
King J, Gay A, Sylvester-Bradley R, Bingham I, Foulkes J, Gregory P, Robinson D (2003) Modelling cereal root systems for water and nitrogen capture: towards an economic optimum. Ann Bot 91:383–390. doi:10.1093/aob/mcg033
Le PVV, Kumar P, Drewry DT (2011) Implications for the hydrologic cycle under climate change due to the expansion of bioenergy crops in the Midwestern United States. Proc Natl Acad Sci 108:15085–15090. doi:10.1073/pnas.1107177108
Lewandowski I, Scurlock JMO, Lindvall E, Christou M (2003) The development and current status of perennial rhizomatous grasses as energy crops in the US and Europe. Biomass Bioenergy 25:335–361. doi:10.1016/s0961-9534(03)00030-8
Ma Z, Wood CW, Bransby DI (2000) Impacts of soil management on root characteristics of switchgrass. Biomass Bioenergy 18:105–112. doi:10.1016/s0961-9534(99)00076-8
McIsaac GF, David MB, Mitchell CA (2010) Miscanthus and switchgrass production in Central Illinois: impacts on hydrology and inorganic nitrogen leaching. J Environ Qual 39:1790–1799. doi:10.2134/jeq2009.0497
Monti A, Zatta A (2009) Root distribution and soil moisture retrieval in perennial and annual energy crops in Northern Italy. Agric Ecosyst Environ 132:252–259. doi:10.1016/j.agee.2009.04.007
Neukirchen D, Himken M, Lammel J, Czyionka-Krause U, Olfs HW (1999) Spatial and temporal distribution of the root system and root nutrient content of an established Miscanthus crop. Eur J Agron 11:301–309
Nippert JB, Wieme RA, Ocheltree TW, Craine JM (2012) Root characteristics of C-4 grasses limit reliance on deep soil water in tallgrass prairie. Plant Soil 355:385–394. doi:10.1007/s11104-011-1112-4
Powlson DS, Riche AB, Shield I (2005) Biofuels and other approaches for decreasing fossil fuel emissions from agriculture. Ann Appl Biol 146:193–201. doi:10.1111/j.1744-7348.2005.040056.x
R Core Team (2014) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, URL http://www.R-project.org/
Ragauskas AJ, Williams CK, Davison BH, Britovsek G, Cairney J, Eckert CA, Frederick WJ Jr, Hallett JP, Leak DJ, Liotta CL, Mielenz JR, Murphy R, Templer R, Tschaplinski T (2006) The path forward for biofuels and biomaterials. Science (Washington) 311:484–489. doi:10.1126/science.1114736
Riche A, Christian DG (2001) Estimates of rhizome weight of Miscanthus with time and rooting depth compared to switchgrass. Asp Appl Biol 65:147–152
Robertson MJ, Fukai S, Ludlow MM, Hammer GL (1993) Water extraction by grain-sorghum in a subhumid environment.1. Analysis of the water extraction pattern. Field Crop Res 33:81–97. doi:10.1016/0378-4290(93)90095-5
Rowe RL, Street NR, Taylor G (2009) Identifying potential environmental impacts of large-scale deployment of dedicated bioenergy crops in the UK. Renew Sustain Energy Rev 13:260–279. doi:10.1016/j.rser.2007.07.008
Rudiger C, Western AW, Walker JP, Smith AB, Kalma JD, Willgoose GR (2010) Towards a general equation for frequency domain reflectometers. J Hydrol 383:319–329. doi:10.1016/j.jhydrol.2009.12.046
Sanderson MA, Adler PR (2008) Perennial forages as second generation bioenergy crops. Int J Mol Sci 9:768–788. doi:10.3390/ijms9050768
Somerville C, Youngs H, Taylor C, Davis SC, Long SP (2010) Feedstocks for lignocellulosic biofuels. Science 329:790–792
Strullu L, Cadoux S, Preudhomme M, Jeuffroy MH, Beaudoin N (2011) Biomass production and nitrogen accumulation and remobilisation by Miscanthus x giganteus as influenced by nitrogen stocks in belowground organs. Field Crop Res 121:381–391. doi:10.1016/j.fcr.2011.01.005
Tardieu F (1988) Analysis of the spatial variability of maize root density—I. Effect of wheel compaction on the spatial arrangement of roots. Plant Soil 107:259–266
van der Weijde T, Kamei CLA, Torres AF, Vermerris W, Dolstra O, Visser RGF, Trindade LM (2013) The potential of C4 grasses for cellulosic biofuel production. Front Plant Sci 4:107. doi:10.3389/fpls.2013.00107
Vanloocke A, Bernacchi CJ, Twine TE (2010) The impacts of Miscanthus x giganteus production on the Midwest US hydrologic cycle. GCB Bioenergy 2:180–191. doi:10.1111/j.1757-1707.2010.01053.x
Zegada-Lizarazu W, Monti A (2011) Energy crops in rotation. A review. Biomass Bioenergy 35:12–25. doi:10.1016/j.biombioe.2010.08.001
Zhang X, Pei D, Chen S (2004) Root growth and soil water utilization of winter wheat in the North China Plain. Hydrol Process 18:2275–2287. doi:10.1002/hyp.5533
Acknowledgments
We are grateful to F. Mahu for the maintenance of the soil moisture and temperature probes, J. Duval for the database development, T. Laemmel for his help in data processing and L. Le Guen, E. Mignot, C. Demay and F. Millon for their technical assistance. This work was supported by the French National Research Agency (ANR) under the project “Regix” and by BPI-France under the project “Futurol”.
Author information
Authors and Affiliations
Corresponding author
Additional information
Responsible Editor: Peter J. Gregory .
Rights and permissions
About this article
Cite this article
Ferchaud, F., Vitte, G., Bornet, F. et al. Soil water uptake and root distribution of different perennial and annual bioenergy crops. Plant Soil 388, 307–322 (2015). https://doi.org/10.1007/s11104-014-2335-y
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11104-014-2335-y


