Plant and Soil

, Volume 388, Issue 1–2, pp 157–173 | Cite as

Soil CO2 efflux and production rates as influenced by evapotranspiration in a dry grassland

  • János Balogh
  • Szilvia Fóti
  • Krisztina Pintér
  • Susanne Burri
  • Werner Eugster
  • Marianna Papp
  • Zoltán Nagy
Regular Article



Our aim was to study the effect of potential biotic drivers, including evapotranspiration (ET) and gross primary production (GPP), on the soil CO2 production and efflux on the diel time scale.


Eddy covariance, soil respiration and soil CO2 gradient systems were used to measure the CO2 and H2O fluxes in a dry, sandy grassland in Hungary. The contribution of CO2 production from three soil layers to plot-scale soil respiration was quantified. CO2 production and efflux residuals after subtracting the effects of the main abiotic and biotic drivers were analysed.


Soil CO2 production showed a strong negative correlation with ET rates with a time lag of 0.5 h in the two upper layers, whereas less strong, but still significant time-lagged and positive correlations were found between GPP and soil CO2 production. Our results suggest a rapid negative response of soil CO2 production rates to transpiration changes, and a delayed positive response to GPP.


We found evidence for a combined effect of soil temperature and transpiration that influenced the diel changes in soil CO2 production. A possible explanation for this pattern could be that a significant part of CO2 produced in the soil may be transported across soil layers via the xylem.


Diel timescale Evapotranspiration Gross primary production Soil CO2 production Time series analysis 



The authors gratefully acknowledge the financial support of the projects OTKA-PD 100575, OTKA-PD 100944, Research Centre of Excellence (8526-5/2014/TUDPOL) and AnimalChange (FP7 266018). János Balogh acknowledges the support of the János Bolyai Research Scholarship of the Hungarian Academy of Sciences and a Sciex-NMS-CH scholarship, grant #12.043. Szilvia Fóti acknowledges the support of the János Bolyai Research Scholarship of the Hungarian Academy of Sciences.

Supplementary material

11104_2014_2314_MOESM1_ESM.docx (1.7 mb)
ESM 1 (DOCX 1698 kb)


  1. Aston MJ, Lawlor DW (1979) The relationship between transpiration, root water uptake and leaf water potential. J Exp Bot 30:169–181CrossRefGoogle Scholar
  2. Aubrey DP, Teskey RO (2009) Root-derived CO2 efflux via xylem stream rivals soil CO2 efflux. New Phytol 184:35–40. doi: 10.1111/j.1469-8137.2009.02971.x CrossRefPubMedGoogle Scholar
  3. Balogh J, Pintér K, Fóti S et al (2011) Dependence of soil respiration on soil moisture, clay content, soil organic matter, and CO2 uptake in dry grasslands. Soil Biol Biochem 43:1006–1013. doi: 10.1016/j.soilbio.2011.01.017 CrossRefGoogle Scholar
  4. Barcza Z, Haszpra L, Kondo H (2003) Carbon exchange of grass in Hungary. Tellus B 187–196Google Scholar
  5. Bekku Y, Sakata T, Tanaka T, Nakano T (2011) Midday depression of tree root respiration in relation to leaf transpiration. Ecol Res 26:791–799. doi: 10.1007/s11284-011-0838-z CrossRefGoogle Scholar
  6. Blagodatsky S, Smith P (2012) Soil physics meets soil biology: towards better mechanistic prediction of greenhouse gas emissions from soil. Soil Biol Biochem 47:78–92. doi: 10.1016/j.soilbio.2011.12.015 CrossRefGoogle Scholar
  7. Bloemen J, McGuire MA, Aubrey DP et al (2013a) Transport of root-respired CO2 via the transpiration stream affects aboveground carbon assimilation and CO2 efflux in trees. New Phytol 197:555–65. doi: 10.1111/j.1469-8137.2012.04366.x CrossRefPubMedGoogle Scholar
  8. Bloemen J, McGuire MA, Aubrey DP et al (2013b) Assimilation of xylem-transported CO2 is dependent on transpiration rate but is small relative to atmospheric fixation. J Exp Bot 64:2129–38. doi: 10.1093/jxb/ert071 CrossRefPubMedGoogle Scholar
  9. Carbone MS, Vargas R (2008) Automated soil respiration measurements: new information, opportunities and challenges. New Phytol 177:297–300. doi: 10.1111/j.1469-8137.2007.02336.x Google Scholar
  10. Carbone MS, Winston GC, Trumbore SE (2008) Soil respiration in perennial grass and shrub ecosystems: linking environmental controls with plant and microbial sources on seasonal and diel timescales. J Geophys Res 113, G02022. doi: 10.1029/2007JG000611 Google Scholar
  11. Davidson E, Savage K, Trumbore S, Borken W (2006a) Vertical partitioning of CO2 production within a temperate forest soil. Glob Chang Biol 12:944–956. doi: 10.1111/j.1365-2486.2006.01142.x CrossRefGoogle Scholar
  12. Davidson EA, Janssens IA, Luo Y (2006b) On the variability of respiration in terrestrial ecosystems: moving beyond Q10. Glob Chang Biol 12:154–164. doi: 10.1111/j.1365-2486.2005.01065.x CrossRefGoogle Scholar
  13. Davidson EA, Samanta S, Caramori SS, Savage K (2012) The Dual Arrhenius and Michaelis-Menten kinetics model for decomposition of soil organic matter at hourly to seasonal time scales. Glob Chang Biol 18:371–384. doi: 10.1111/j.1365-2486.2011.02546.x CrossRefGoogle Scholar
  14. Eler K, Plestenjak G, Ferlan M et al (2013) Soil respiration of karst grasslands subjected to woody-plant encroachment. Eur J Soil Sci 64:210–218. doi: 10.1111/ejss.12020 CrossRefGoogle Scholar
  15. Farkas C, Alberti G, Balogh J et al (2011) Methodologies. In: Haszpra L (ed) Atmospheric greenhouse gases: the Hungarian perspective. Springer, New York, pp 65–90Google Scholar
  16. Fóti S, Balogh J, Nagy Z et al (2014) Soil moisture induced changes on fine-scale spatial pattern of soil respiration in a semi-arid sandy grassland. Geoderma 213:245–254. doi: 10.1016/j.geoderma.2013.08.009 CrossRefGoogle Scholar
  17. Graf A, Weihermüller L, Huisman J et al (2008) Measurement depth effects on the apparent temperature sensitivity of soil respiration in field studies. Biogeosciences 5:1175–1188CrossRefGoogle Scholar
  18. Grossiord C, Mareschal L, Epron D (2012) Transpiration alters the contribution of autotrophic and heterotrophic components of soil CO2 efflux. New Phytol 194:647–53. doi: 10.1111/j.1469-8137.2012.04102.x CrossRefPubMedGoogle Scholar
  19. Hagyó A (2010) Vízforgalom gyep és erdő területeken (Water cycle of grasslands and forests). PhD Thesis, Szent István University, p.129Google Scholar
  20. Hetherington AM, Woodward FI (2003) The role of stomata in sensing and driving environmental change. Nature 424:901–908CrossRefPubMedGoogle Scholar
  21. Högberg P, Read DJ (2006) Towards a more plant physiological perspective on soil ecology. Trends Ecol Evol 21:548–54. doi: 10.1016/j.tree.2006.06.004 CrossRefPubMedGoogle Scholar
  22. Högberg P, Nordgren A, Buchmann N et al (2001) Large-scale forest girdling shows that current photosynthesis drives soil respiration. Nature 411:789–92. doi: 10.1038/35081058 CrossRefPubMedGoogle Scholar
  23. Högberg P, Högberg MN, Göttlicher SG et al (2008) High temporal resolution tracing of photosynthate carbon from the tree canopy to forest soil microorganisms. New Phytol 177:220–8. doi: 10.1111/j.1469-8137.2007.02238.x PubMedGoogle Scholar
  24. Hopkins F, Gonzalez-Meler MA, Flower CE et al (2013) Ecosystem-level controls on root-rhizosphere respiration. New Phytol 199:339–51CrossRefPubMedGoogle Scholar
  25. Huang N, Niu Z (2012) Estimating soil respiration using spectral vegetation indices and abiotic factors in irrigated and rainfed agroecosystems. Plant Soil 367:535–550. doi: 10.1007/s11104-012-1488-9 CrossRefGoogle Scholar
  26. Huang N, Niu Z, Zhan Y et al (2012) Relationships between soil respiration and photosynthesis-related spectral vegetation indices in two cropland ecosystems. Agric For Meteorol 160:80–89. doi: 10.1016/j.agrformet.2012.03.005 CrossRefGoogle Scholar
  27. Jia B, Zhou G (2009) Integrated diurnal soil respiration model during growing season of a typical temperate steppe: Effects of temperature, soil water content and biomass production. Soil Biol Biochem 41:681–686. doi: 10.1016/j.soilbio.2008.12.030 CrossRefGoogle Scholar
  28. Jones DL, Nguyen C, Finlay RD (2009) Carbon flow in the rhizosphere: carbon trading at the soil–root interface. Plant Soil 321:5–33. doi: 10.1007/s11104-009-9925-0 CrossRefGoogle Scholar
  29. Kuzyakov Y, Gavrichkova O (2010) Review: time lag between photosynthesis and carbon dioxide efflux from soil: a review of mechanisms and controls. Glob Chang Biol 16:3386–3406. doi: 10.1111/j.1365-2486.2010.02179.x CrossRefGoogle Scholar
  30. Lellei-Kovács E, Kovács-Láng E, Botta-Dukát Z et al (2011) Thresholds and interactive effects of soil moisture on the temperature response of soil respiration. Eur J Soil Biol 47:247–255. doi: 10.1016/j.ejsobi.2011.05.004 CrossRefGoogle Scholar
  31. Lloyd J, Taylor J (1994) On the temperature dependence of soil respiration. Funct Ecol 8:315–323CrossRefGoogle Scholar
  32. Lu Y, Gehan J, Sharkey T (2005) Daylength and circadian effects on starch degradation and maltose metabolism. Plant Physiol 138:2280–2291. doi: 10.1104/pp. 105.061903.2280 CrossRefPubMedCentralPubMedGoogle Scholar
  33. Martin JG, Phillips CL, Schmidt A et al (2012) High-frequency analysis of the complex linkage between soil CO2 fluxes, photosynthesis and environmental variables. Tree Physiol 32:49–64. doi: 10.1093/treephys/tpr134 CrossRefPubMedGoogle Scholar
  34. Mencuccini M, Hölttä T (2010) The significance of phloem transport for the speed with which canopy photosynthesis and belowground respiration are linked. New Phytol 185:189–203. doi: 10.1111/j.1469-8137.2009.03050.x CrossRefPubMedGoogle Scholar
  35. Moldrup P, Olesen T (2000) Predicting the gas diffusion coefficient in undisturbed soil from soil water characteristics. Soil Sci Soc Am J 64:94–100CrossRefGoogle Scholar
  36. Moyano F, Kutsch W, Schulze E (2007) Response of mycorrhizal, rhizosphere and soil basal respiration to temperature and photosynthesis in a barley field. Soil Biol Biochem 39:843–853. doi: 10.1016/j.soilbio.2006.10.001 CrossRefGoogle Scholar
  37. Moyano FE, Manzoni S, Chenu C (2013) Responses of soil heterotrophic respiration to moisture availability: an exploration of processes and models. Soil Biol Biochem 59:72–85. doi: 10.1016/j.soilbio.2013.01.002 CrossRefGoogle Scholar
  38. Nagy Z, Pintér K, Czóbel S et al (2007) The carbon budget of semi-arid grassland in a wet and a dry year in Hungary. Agric Ecosyst Environ 121:21–29. doi: 10.1016/j.agee.2006.12.003 CrossRefGoogle Scholar
  39. Nagy Z, Pintér K, Pavelka M et al (2011) Carbon balance of surfaces vs. ecosystems: advantages of measuring eddy covariance and soil respiration simultaneously in dry grassland ecosystems. Biogeosciences 8:2523–2534. doi: 10.5194/bg-8-2523-2011 CrossRefGoogle Scholar
  40. Parkin TB, Kaspar TC (2003) Temperature controls on diurnal carbon dioxide flux : implications for estimating soil carbon loss. Soil Sci Soc Am J 67:1763–1772CrossRefGoogle Scholar
  41. Pavelka M, Acosta M, Marek MV et al (2007) Dependence of the Q10 values on the depth of the soil temperature measuring point. Plant Soil 292:171–179. doi: 10.1007/s11104-007-9213-9 CrossRefGoogle Scholar
  42. Pintér K, Balogh J, Nagy Z (2010) Ecosystem scale carbon dioxide balance of two grasslands in Hungary under different weather conditions. Acta Biol Hung 61(Suppl):130–5. doi: 10.1556/ABiol.61.2010.Suppl.13 CrossRefPubMedGoogle Scholar
  43. Reichstein M, Falge E, Baldocchi D et al (2005) On the separation of net ecosystem exchange into assimilation and ecosystem respiration: review and improved algorithm. Glob Chang Biol 11:1424–1439. doi: 10.1111/j.1365-2486.2005.001002.x CrossRefGoogle Scholar
  44. Ruehr NK, Knohl A, Buchmann N (2009) Environmental variables controlling soil respiration on diurnal, seasonal and annual time-scales in a mixed mountain forest in Switzerland. Biogeochemistry 98:153–170. doi: 10.1007/s10533-009-9383-z CrossRefGoogle Scholar
  45. Savage K, Davidson EA, Tang J (2013) Diel patterns of autotrophic and heterotrophic respiration among phenological stages. Glob Chang Biol 19:1151–1159. doi: 10.1111/gcb.12108 CrossRefPubMedGoogle Scholar
  46. Sparks D, Page A, Helmke P, et al. (1996) Methods of soil analysis - Part 3: Chemical methods. 1309Google Scholar
  47. Subke J-A, Bahn M (2010) On the “temperature sensitivity” of soil respiration: can we use the immeasurable to predict the unknown? Soil Biol Biochem 42:1653–1656CrossRefPubMedCentralPubMedGoogle Scholar
  48. Vargas R, Detto M, Baldocchi DD, Allen MF (2010) Multiscale analysis of temporal variability of soil CO2 production as influenced by weather and vegetation. Glob Chang Biol 16:1589–1605. doi: 10.1111/j.1365-2486.2009.02111.x CrossRefGoogle Scholar
  49. Vargas R, Baldocchi DD, Bahn M et al (2011) On the multi-temporal correlation between photosynthesis and soil CO2 efflux: reconciling lags and observations. New Phytol 191:1006–17. doi: 10.1111/j.1469-8137.2011.03771.x CrossRefPubMedGoogle Scholar
  50. Verma AK, Kelleners TJ (2012) Depthwise carbon dioxide production and transport in a rangeland soil. Soil Sci Soc Am J 76:821–828. doi: 10.2136/sssaj2011.0416 CrossRefGoogle Scholar
  51. Wang Q, Tenhunen J, Dinh NQ et al (2004) Similarities in ground- and satellite-based NDVI time series and their relationship to physiological activity of a Scots pine forest in Finland. Remote Sens Environ 93:225–237. doi: 10.1016/j.rse.2004.07.006 CrossRefGoogle Scholar
  52. Wang W, Peng S, Fang J (2010) Root respiration and its relation to nutrient contents in soil and root and EVI among 8 ecosystems, northern China. Plant Soil 333:391–401. doi: 10.1007/s11104-010-0354-x CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • János Balogh
    • 1
    • 2
  • Szilvia Fóti
    • 3
  • Krisztina Pintér
    • 1
  • Susanne Burri
    • 2
  • Werner Eugster
    • 2
  • Marianna Papp
    • 3
  • Zoltán Nagy
    • 1
    • 3
  1. 1.Institute of Botany and EcophysiologySzent István UniversityGödöllőHungary
  2. 2.Grassland Sciences Group, Institute of Agricultural SciencesETH ZurichZürichSwitzerland
  3. 3.MTA-SZIE Plant Ecology Research GroupSzent István UniversityGödöllőHungary

Personalised recommendations