Skip to main content

Advertisement

Log in

Responses of soil carbon and nitrogen to successive land use conversion in seasonally frozen zones

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Background and aims

Policy-oriented successive land use conversion intensively occurred in seasonally frozen zones of China during the past five decades. However, responses of soil carbon (C) and nitrogen (N) to land use conversion under cold temperate climates are not fully understood. The objective was to characterize C and N variations following a succession of forest, dryland and paddy.

Methods

Soil cores were collected for 6 layers with a 10 cm increment from three adjacent chronosequences to determine concentrations of soil organic carbon (SOC), total nitrogen (TN), dissolved organic carbon (DOC) and alkaline hydrolysable nitrogen (HN). Analysis of variance with multivariate general linear model was operated on data sets.

Results

Significant losses of SOC and TN storages subject to land use conversion were merely confined within 0 – 10 cm layer, decreasing by 16 % and 38 % for forest to dryland and by 23 % and 43 % for forest to paddy, respectively. Cultivation also influenced SOC and TN stocks at 20 – 40 cm depth for dryland and 20 – 60 cm depth for paddy with increases by 38 Mg C ha−1 and 2.8 Mg N ha−1 for forest to dryland, and by 56 Mg C ha−1 and 4.1 Mg N ha−1 for forest to paddy, respectively.

Conclusion

Successive land use conversion from forest to cropland affected C and N levels in deeper layers, demonstrating the high potentials of subsoil in sequestrating C and N. The extents of cultivation-induced SOC and TN redistribution along soil profile varied among different agricultural systems. DOC and HN changes interpreted SOC and TN changes with land use, presenting high involvements of soluble compartments in SOC and TN variations. The net variation in SOC/TN ratio effectively indicated C and N changes when dryland was converted to paddy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Álvaro-Fuentes J, Plaza-Bonilla D, Arrúe JL, Lampurlanés J, Cantero-Martínez C (2012) Soil organic carbon storage in a no-tillage chronosequence under Mediterranean conditions. Plant Soil 376(1–2):31–41. doi:10.1007/s11104-012-1167-x

    Google Scholar 

  • Bhattacharyya R, Kundu S, Srivastva AK, Gupta HS, Prakash V, Bhatt JC (2010) Long term fertilization effects on soil organic carbon pools in a sandy loam soil of the Indian sub-Himalayas. Plant Soil 341(1–2):109–124. doi:10.1007/s11104-010-0627-4

    Google Scholar 

  • Cheng X, Yang Y, Li M, Dou X, Zhang Q (2012) The impact of agricultural land use changes on soil organic carbon dynamics in the Danjiangkou Reservoir area of China. Plant Soil 366(1–2):415–424. doi:10.1007/s11104-012-1446-6

    Google Scholar 

  • Churchland C, Mayo-Bruinsma L, Ronson A, Grogan P (2010) Soil microbial and plant community responses to single large carbon and nitrogen additions in low arctic tundra. Plant Soil 334(1–2):409–421. doi:10.1007/s11104-010-0392-4

    Article  CAS  Google Scholar 

  • Ding F, Hu Y-L, Li L-J, Li A, Shi S, Lian P-Y, Zeng D-H (2013) Changes in soil organic carbon and total nitrogen stocks after conversion of meadow to cropland in Northeast China. Plant Soil 373(1–2):659–672. doi:10.1007/s11104-013-1827-5

    Article  CAS  Google Scholar 

  • Eusterhues K, Rumpel C, Kogel-Knabner I (2005) Organo-mineral associations in sandy acid forest soils: importance of specific surface area, iron oxides and micropores. Eur J Soil Sci 56:753–763. doi:10.1111/j.1365-2389.2005.00710.x

    CAS  Google Scholar 

  • Filep T, Rékási M (2011) Factors controlling dissolved organic carbon (DOC), dissolved organic nitrogen (DON) and DOC/DON ratio in arable soils based on a dataset from Hungary. Geoderma 162(3–4):312–318. doi:10.1016/j.geoderma.2011.03.002

    Article  CAS  Google Scholar 

  • Gami SK, Lauren JG, Duxbury JM (2009) Influence of soil texture and cultivation on carbon and nitrogen levels in soils of the eastern Indo-Gangetic Plains. Geoderma 153(3–4):304–311. doi:10.1016/j.geoderma.2009.08.003

    Article  CAS  Google Scholar 

  • Gödde M, David MB, Christ MJ, Kaupenjohann M, Vance GF (1996) Carbon mobilization from the forest floor under red spruce in the northeastern U.S.A. Soil Biol Biochem 28:1181–1189

    Article  Google Scholar 

  • Guggenberger G, Kaiser K (2003) Dissolved organic matter in soil: challenging the paradigm of sorptive preservation. Geoderma 113(3–4):293–310. doi:10.1016/s0016-7061(02)00366-x

    Article  CAS  Google Scholar 

  • Guo L, Gifford R (2002) Soil carbon stocks and land use change: a meta analysis. Glob Chang Biol 8(4):345–360

    Article  Google Scholar 

  • Harper RJ, Tibbett M (2013) The hidden organic carbon in deep mineral soils. Plant Soil 368(1–2):641–648. doi:10.1007/s11104-013-1600-9

    Article  CAS  Google Scholar 

  • Herman DJ, Johnson KK, Jaeger CH, Schwartz E, Firestone MK (2006) Root Influence on Nitrogen Mineralization and Nitrification in Rhizosphere Soil. Soil Sci Soc Am J 70(5):1504. doi:10.2136/sssaj2005.0113

    Article  CAS  Google Scholar 

  • IPCC (2006) Revised IPCC guidelines for national greenhouse gas inventories. Cambridge University Press, Cambridge

    Google Scholar 

  • Kalbitz K, Schwesig D, Rethemeyer J, Matzner E (2005) Stabilization of dissolved organic matter by sorption to the mineral soil. Soil Biol Biochem 37(7):1319–1331. doi:10.1016/j.soilbio.2004.11.028

    Article  CAS  Google Scholar 

  • Kalbitz K, Kaiser K, Fiedler S, Kölbl A, Amelung W, Bräuer T, Zhihong C, Don A, Grootes P, Jahn R, Schwark L, Vogelsang V, Wissing L, Kögel-Knabner I (2013) The carbon count of 2000 years of rice cultivation. Glob Chang Biol 4:1107–1113

    Article  Google Scholar 

  • Kindler R, Siemens JAN, Kaiser K, Walmsley DC, Bernhofer C, Buchmann N, Cellier P, Eugster W, Gleixner G, GrŨNwald T, Heim A, Ibrom A, Jones SK, Jones M, Klumpp K, Kutsch W, Larsen KS, Lehuger S, Loubet B, McKenzie R, Moors E, Osborne B, Pilegaard KIM, Rebmann C, Saunders M, Schmidt MWI, Schrumpf M, Seyfferth J, Skiba UTE, Soussana J-F, Sutton MA, Tefs C, Vowinckel B, Zeeman MJ, Kaupenjohann M (2011) Dissolved carbon leaching from soil is a crucial component of the net ecosystem carbon balance. Glob Chang Biol 17(2):1167–1185. doi:10.1111/j.1365-2486.2010.02282.x

    Article  Google Scholar 

  • Liang A, Yang X, Zhang X, McLaughlin N, Shen Y, Li W (2009) Soil organic carbon changes in particle-size fractions following cultivation of Black soils in China. Soil Till Res 105(1):21–26. doi:10.1016/j.still.2009.05.002

    Article  Google Scholar 

  • Maia SMF, Ogle SM, Cerri CC, Cerri CEP (2010) Changes in soil organic carbon storage under different agricultural management systems in the Southwest Amazon Region of Brazil. Soil Till Res 106(2):177–184. doi:10.1016/j.still.2009.12.005

    Article  Google Scholar 

  • Michel K, Matzner E (2002) Nitrogen content of forest floor Oa layers affects carbon pathways and nitrogen mineralization. Soil Biol Biochem 34:1807–1813

    Article  CAS  Google Scholar 

  • Montaño NM, García-Oliva F, Jaramillo VJ (2007) Dissolved organic carbon affects soil microbial activity and nitrogen dynamics in a Mexican tropical deciduous forest. Plant Soil 295(1–2):265–277. doi:10.1007/s11104-007-9281-x

    Article  Google Scholar 

  • Murty D, Kirschbaum MUF, Mcmurtrie RE, Mcgilvray H (2002) Does conversion of forest to agricultural land change soil carbon and nitrogen? A review of the literature. Glob Chang Biol 8(2):105–123

    Article  Google Scholar 

  • Pu X, Cheng HG, Shan YS, Chen SY, Ding ZL, Hao FH (2012) Factor controlling soil organic carbon and total nitrogen dynamics under long-term conventional cultivation in seasonally frozen soils. Acta Agric Scand Sect B Soil Plant Sci 62(8):749–764. doi:10.1080/09064710.2012.700318

    CAS  Google Scholar 

  • Puget P, Lal R (2005) Soil organic carbon and nitrogen in a Mollisol in central Ohio as affected by tillage and land use. Soil Till Res 80:201–213. doi:10.1016/j.still.2004.03.018

    Article  Google Scholar 

  • Rasse DP, Rumpel C, Dignac M-F (2005) Is soil carbon mostly root carbon? Mechanisms for a specific stabilisation. Plant Soil 269(1–2):341–356. doi:10.1007/s11104-004-0907-y

    Article  CAS  Google Scholar 

  • Roberts TL, Norman RJ, Slaton NA, Wilson CE (2009a) Changes in Alkaline Hydrolyzable Nitrogen Distribution with Soil Depth: Fertilizer Correlation and Calibration Implications. Soil Sci Soc Am J 73(6):2151–2158. doi:10.2136/sssaj2009.0089

    Article  CAS  Google Scholar 

  • Roberts TL, Norman RJ, Slaton NA, Wilson CE, Ross WJ, Bushong JT (2009b) Direct steam distillation as an alternative to the Illinois soil nitrogen test. Soil Sci Soc Am J 73:1268–1275

    Article  CAS  Google Scholar 

  • Rumpel C, Kögel-Knabner I (2010) Deep soil organic matter—a key but poorly understood component of terrestrial C cycle. Plant Soil 338(1–2):143–158. doi:10.1007/s11104-010-0391-5

    Google Scholar 

  • Schjønning P, Thomsen IK, Moldrup P, CB T (2003) Linking Soil Microbial Activity to Water- and Air-Phase Contents and Diffusivities. Soil Sci Soc Am J 67:156–165

    Article  Google Scholar 

  • Schwertmann U, Wagner F, Knicker H (2005) Ferrihydrite–humic associations: magnetic hyperfine interactions. Soil Sci Soc Am J 69(4):1009–1015. doi:10.2136/sssaj2004.0274

    Article  CAS  Google Scholar 

  • Siemens J (2003) The European carbon budget: a gap. Science 302:1681

    Article  CAS  PubMed  Google Scholar 

  • Smith P (2004) Soils as carbon sinks: the global context. Soil Use Manag 20:212–218

    Article  Google Scholar 

  • Stevenson FJ (1994) Humus chemistry: genesis, composition, reactions, 2nd edn. John Wiley and Sons, New York

    Google Scholar 

  • Taylor PG, Townsend AR (2010) Stoichiometric control of organic carbon–nitrate relationships from soils to the sea. Nature 464(7292):1178–1181. doi:10.1038/nature08985

    Article  CAS  PubMed  Google Scholar 

  • Wagai R, Mayer LM (2007) Sorptive stabilization of organic matter in soils by hydrous iron oxides. Geochim Cosmochim Acta 71(1):25–35. doi:10.1016/j.gca.2006.08.047

    Article  CAS  Google Scholar 

  • Wang C, Wan S, Xing X, Zhang L, Han X (2006) Temperature and soil moisture interactively affected soil net N mineralization in temperate grassland in Northern China. Soil Biol Biochem 38(5):1101–1110. doi:10.1016/j.soilbio.2005.09.009

    Article  CAS  Google Scholar 

  • Wesemael B, Paustian K, Andrén O, Cerri CEP, Dodd M, Etchevers J, Goidts E, Grace P, Kätterer T, McConkey BG, Ogle S, Pan G, Siebner C (2010) How can soil monitoring networks be used to improve predictions of organic carbon pool dynamics and CO2 fluxes in agricultural soils? Plant Soil 338(1–2):247–259. doi:10.1007/s11104-010-0567-z

    Google Scholar 

  • Wiesmeier M, Spörlein P, Geuß U, Hangen E, Haug S, Reischl A, Schilling B, Lützow M, Kögel-Knabner I (2012) Soil organic carbon stocks in southeast Germany (Bavaria) as affected by land use, soil type and sampling depth. Glob Chang Biol 18(7):2233–2245. doi:10.1111/j.1365-2486.2012.02699.x

    Article  Google Scholar 

  • Wissing L, Kölbl A, Häusler W, Schad P, Cao Z-H, Kögel-Knabner I (2013) Management-induced organic carbon accumulation in paddy soils: The role of organo-mineral associations. Soil Till Res 126:60–71. doi:10.1016/j.still.2012.08.004

    Article  Google Scholar 

  • Wright AL, Dou FG, Hons FM (2007) Crop species and tillage effects on carbon sequestration in subsurface soil. Soil Sci 172:124–131

    Article  CAS  Google Scholar 

  • Xing BS, Dudas MJ, Zhang ZY, Xu Q (1994) Pedogenetic characteristics of albic soils inthe three river plain, Heilongjiang province. Acta Pedol Sin 31:95–104

    Google Scholar 

  • Yu G, Fang H, Gao L, Zhang W (2006) Soil organic carbon budget and fertility variation of black soils in Northeast China. Ecol Res 21(6):855–867. doi:10.1007/s11284-006-0033-9

    Article  CAS  Google Scholar 

  • Zak DR, Grigal DF, Gleeson S, Tilman D (1990) Carbon and nitrogen cycling during old-field succession: constraints on plant and microbial biomass. Biogeochemistry 11:111–129

    Article  Google Scholar 

  • Zhang GL, Gong ZT (2003) Pedogenic evolution of paddy soils in different soil landscapes. Geoderma 115(1–2):15–29. doi:10.1016/s0016-7061(03)00072-7

    Article  CAS  Google Scholar 

  • Zhang YS, Lin XY, Werner W (2003) The effect of soil flooding on the transformation of Fe oxides and the adsorption/desorption behavior of phosphate. J Plant Nutr Soil Sci 166:68–75

    Article  CAS  Google Scholar 

  • Zotarelli L, Alves BJR, Urquiaga S, Boddey RM, Six J (2007) Impact of tillage and crop rotation on light fraction and intra-aggregate soil organic matter in two Oxisols. Soil Till Res 95(1–2):196–206. doi:10.1016/j.still.2007.01.002

    Article  Google Scholar 

Download references

Acknowledgments

This research was financially supported by projects of National Natural Science Foundation of China (Grant No. 41171384, 41271414 and 41301529) and the GLOCOM project (EU FP7-People, Grant No. PIRSES-GA-2010-269233). We are grateful to staff in Land Consolidation and Rehabilitation Center of Bawujiu Farm, for their help on field sampling. We also greatly appreciate the responsible editor and the two anonymous reviewers whose comments have dramatically improved this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongguang Cheng.

Additional information

Responsible Editor: Ingrid Koegel-Knabner.

Electronic Supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 290 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pu, X., Cheng, H., Tysklind, M. et al. Responses of soil carbon and nitrogen to successive land use conversion in seasonally frozen zones. Plant Soil 387, 117–130 (2015). https://doi.org/10.1007/s11104-014-2284-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-014-2284-5

Keywords

Navigation