A new LandscapeDNDC biogeochemical module to predict CH4 and N2O emissions from lowland rice and upland cropping systems

Abstract

Background and aims

Replacing paddy rice by upland systems such as maize cultivation is an on-going trend in SE Asia caused by increasing water scarcity and higher demand for meat. How such land management changes will feedback on soil C and N cycles and soil greenhouse gas emissions is not well understood at present.

Methods

A new LandscapeDNDC biogeochemical module was developed that allows the effect of land management changes on soil C and N cycle to be simulated. The new module is applied in combination with further modules simulating microclimate and crop growth and evaluated against observations from field experiments.

Results

The model simulations agree well with observed dynamics of CH 4 emissions in paddy rice depending on changes in climatic conditions and agricultural management. Magnitude and peak emission periods of N 2 O from maize cultivation are simulated correctly, though there are still deficits in reproducing day-to-day dynamics. These shortcomings are most likely related to simulated soil hydrology and may only be resolved if LandscapeDNDC is coupled to more complex hydrological models.

Conclusions

LandscapeDNDC allows for simulation of changing land management practices in SE Asia. The possibility to couple LandscapeDNDC to more complex hydrological models is a feature needed to better understand related effects on soil-atmosphere-hydrosphere interactions.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig.7
Fig.8

References

  1. Alberto MCR, Quilty JR, Buresh RJ, et al. (2014) Actual evapotranspiration and dual crop coefficients for dry-seeded rice and hybrid maize grown with overhead sprinkler irrigation. Agric. Water Manage. 136:1–12. doi:10.1016/j.agwat.2014.01.005

  2. Anastasi C, Dowding M, Simpson VJ (1992) Future CH4 emissions from rice production. J Geophys Res 97:7521–7525. doi:10.1029/92JD00157

    Article  CAS  Google Scholar 

  3. Arah J, Stephen K (1998) A model of the processes leading to methane emission from peatland. Atmos Environ 32:3257–3264

    Article  CAS  Google Scholar 

  4. Aulakh MS, Bodenbender J, Wassmann R (2000) Methane transport capacity of rice plants. II. Variations among different rice cultivars and relationship with morphological characteristics. Nutr Cycling Agroecosyst 58:367–375

    Article  CAS  Google Scholar 

  5. Aulakh MS, Wassmann R, Rennenberg H (2002) Methane transport capacity of twenty-two rice cultivars from five major Asian rice-growing countries. Agric Ecosyst Environ 91:59–71

    Article  CAS  Google Scholar 

  6. Bachelet D, Neue HU (1993) Methane emissions from wetland rice areas of Asia. Chemosphere 26:219–237. doi:10.1016/0045-6535(93)90423-3

    Article  CAS  Google Scholar 

  7. Ball JT, Woodrow IE, Berry JA (1987) A model predicting stomatal conductance and its contribution to the control of photosynthesis under different environmental conditions. In: Biggins J (ed) Progress in photosynthesis research. Nijhoff, Dordrecht, pp 221–224

    Google Scholar 

  8. Blagodatsky S, Richter O (1998) Microbial growth in soil and nitrogen turnover: a theoretical model considering the activity state of microorganisms. Soil Biol Biochem 30:1743–1755

    Article  CAS  Google Scholar 

  9. Blagodatsky S, Grote R, Kiese R, Werner C, Butterbach-Bahl K (2011) Modelling of microbial carbon and nitrogen turnover in soil with special emphasis on N-trace gases emission. Plant and Soil 346:297–330–330. doi: 10.1007/s11104-011-0821-z

  10. Borken W, Matzner E (2008) Reappraisal of drying and wetting effects on C and N mineralization and fluxes in soils. Glob Chang Biol 14:1–17

    Google Scholar 

  11. Bouman BAM, Tuong TP (2001) Field water management to save water and increase its productivity in irrigated lowland rice. Agric Water Manag 49:11–30

    Article  Google Scholar 

  12. Bouman BAM, Humphreys E, Tuong TP, Barker R (2007) Rice and water. Adv Agron 92:187–237

    Article  CAS  Google Scholar 

  13. Braker G, Conrad R (2011) Diversity, structure and size of N2O-producing microbial communities - what matters for their functioning? Adv Appl Microbiol 75:33–70

    PubMed  Article  CAS  Google Scholar 

  14. Bronson KF, Cassman KG, Wassmann R, Olk DC, van Noordwijk M, Garrity DP (2006) Soil carbon dynamics in different cropping systems in principal ecoregions of Asia. In: LaI R, Kimble J, Follett RF, Stewar BA (eds) In management of carbon sequestration in soil. CRC Press, Boca Raton, pp 35–57

    Google Scholar 

  15. Butterbach-Bahl K, Papen H, Rennenberg H (1997) Impact of gas transport through rice cultivars on methane emission from rice paddy fields. Plant Cell Environ 20:1175–1183

    Article  CAS  Google Scholar 

  16. Butterbach-Bahl K, Papen H, Rennenberg H (2000) Scanning electron microscopy analysis of the aerenchyma in two rice cultivars. Phyton 40:43–55

    Google Scholar 

  17. Butterbach-Bahl K, Stange F, Papen H, Li C (2001) Regional inventory of nitric oxide and nitrous oxide emissions for forest soils of southeast Germany using the biogeochemical model PnET–N–DNDC. J Geophys Res 106:34155–34166

    Article  CAS  Google Scholar 

  18. Butterbach-Bahl K, Kesik M, Miehle P, Papen H, Li C (2004a) Quantifying the regional source strength of N-trace gases across agricultural and forest ecosystems with process based models. Plant Soil 260:311–329. doi:10.1023/B:PLSO.0000030186.81212.fb

    Article  CAS  Google Scholar 

  19. Butterbach-Bahl K, Kock M, Willibald G, Hewett B, Buhagiar S, Papen H, Kiese R (2004b) Temporal variations of fluxes of NO, NO2, N2O, CO2 and CH4 in a tropical rain forest ecosystem. Global Biogeochemical Cycles 18, doi:10.1029/2004GB002243

  20. Butterbach-Bahl K, Kahl M, Mykhayliv L, Werner C, Kiese R, Li C (2009) A European-wide inventory of soil NO emissions using the biogeochemical models DNDC/Forest-DNDC. Atmos Environ 43:1392–1402

    Article  CAS  Google Scholar 

  21. Butterbach-Bahl K, Baggs EM, Dannenmann M, Kiese R, Zechmeister-Boltenstern S (2013) Nitrous oxide emissions from soils: how well do we understand the processes and their controls? Philos Trans R Soc Lond B Biol Sci 368:20130122–20130122. doi:10.1098/rstb.2013.0122

    PubMed Central  PubMed  Article  CAS  Google Scholar 

  22. Cao M, Dent JB, Heal OW (1995) Modeling methane emissions from rice paddies. Glob Biogeochem Cycles 9(2):183–195. doi:10.1029/94GB03231

    Article  CAS  Google Scholar 

  23. Cheng K, Ogle SM, Parton WJ, Pan G (2013) Predicting methanogenesis from rice paddies using the DAYCENT ecosystem model. Ecol Model 261–261:19–31. doi:10.1016/j.ecolmodel.2013.04.003

    Article  CAS  Google Scholar 

  24. Chirinda N, Kracher D, Lægdsmand M, Porter JR, Olesen JE, Petersen BM, Doltra J, Kiese R, Butterbach-Bahl K (2011) Simulating soil N2O emissions and heterotrophic CO2 respiration in arable systems using FASSET and MoBiLE-DNDC. Plant Soil 343:139–160

    Article  CAS  Google Scholar 

  25. Cicerone RJ, Delwiche CC, Tyler SC, Zimmerman PR (2012) Methane emissions from California rice paddies with varied treatments. Glob Biogeochem Cycles 6(3):233–248. doi:10.1029/92GB01412

    Article  Google Scholar 

  26. Conrad R (1996) Soil microorganisms as controllers of atmospheric trace gases (H2, CO, CH4, OCS, N2O, and NO). Microbiol Rev 60:609–640

    PubMed Central  PubMed  CAS  Google Scholar 

  27. Conrad R (1999) Contribution of hydrogen to methane production and control of hydrogen concentrations in methanogenic soils and sediments. FEMS Microbiol Ecol 28:193–202

    Article  CAS  Google Scholar 

  28. Corbeels M, McMurtrie RE, Pepper DA, O’Connell AM (2005) A process-based model of nitrogen cycling in forest plantations: Part I. Structure, calibration and analysis of the decomposition model. Ecol Model 187:426–448

    Article  CAS  Google Scholar 

  29. de Bruijn AMG, Butterbach-Bahl K (2009) Linking carbon and nitrogen mineralization with microbial responses to substrate availability — the DECONIT model. Plant Soil 328:271–290. doi:10.1007/s11104-009-0108-9

    Article  CAS  Google Scholar 

  30. de Bruijn AMG, Grote R, Butterbach-Bahl K (2011) An alternative modelling approach to predict emissions of N2O and NO from forest soils. Eur J For Res 130:755–773. doi:10.1007/s10342-010-0468-y

    Article  CAS  Google Scholar 

  31. Denman KL, Brasseur G, Chidthaisong A, Ciais P, Cox PM, Dickinson RE, Hauglustaine D, Heinze C, Holland E, Jacob D, Lohmann U, Ramachandran S, da Silva Dias PL, Wofsy SC, Zhang X (2007) Couplings between changes in the climate system and biogeochemistry. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge

    Google Scholar 

  32. Devendra C, Thomas D (2002) Smallholder farming systems in Asia. Agric Syst 71:17–25

    Article  Google Scholar 

  33. Farquhar GD, von Caemmerer S, Berry JA (1980) A biochemical model of photosynthetic CO2 assimilation in leaves of C 3 species. Planta 149:78–90. doi:10.1007/BF00386231

    PubMed  Article  CAS  Google Scholar 

  34. Fetzer S, Conrad R (1993) Effect of redox potential on methanogenesis by Methanosarcina barkeri. Arch Microbiol 160:108–113. doi:10.1007/BF00288711

    Article  CAS  Google Scholar 

  35. Firestone MK, Davidson EA (1989) Microbiological basis of NO and N2O production and consumption in soil. Exchange of trace gases between terrestrial ecosystems and the atmosphere, In: Andreae MO, Schimel DS (eds), John Wiley, New York, pp. 7–21, 1989

  36. Fumoto T, Kobayashi K, Li C, Hasegawa T (2008) Revising a process–based biogeochemistry model (DNDC) to simulate methane emission from rice paddy fields under various residue management and fertilizer regimes. Glob Chang Biol 14:382–402

    Article  Google Scholar 

  37. Gaydon DS, Probert ME, Buresh RJ, Meinke H (2012) Modelling the role of algae in rice crop nutrition and soil organic carbon maintenance. Eur J Agron 39:35–43. doi:10.1016/j.eja.2012.01.004

    Article  CAS  Google Scholar 

  38. Grote R, Lehmann E, Brümmer C, Brüggemann N, Szarzynski J, Kunstmann H (2009) Modelling and observation of biosphere–atmosphere interactions in natural savannah in Burkina Faso, West Africa. Phys Chem Earth 34:251–260. doi:10.1016/j.pce.2008.05.003

    Article  Google Scholar 

  39. Grote R, Kiese R, Grünwald T, Ourcival J-M, Granier A (2011) Modelling forest carbon balances considering tree mortality and removal. Agric For Meteorol 151:179–190

    Article  Google Scholar 

  40. Haas E, Klatt S, Fröhlich A, Kraft P, Werner C, Kiese R, Grote R, Breuer L, Butterbach-Bahl K (2013) LandscapeDNDC: a process model for simulation of biosphere–atmosphere–hydrosphere exchange processes at site and regional scale. Landsc Ecol 28:615–636. doi:10.1007/s10980-012-9772-x

    Article  Google Scholar 

  41. Haefele SM, Banayo NPM, Amarante ST, Siopongco JDLC, Mabesa RL (2013) Characteristics and management options for rice-maize systems in the Philippines. Field Crop Res 144:52–61

    Article  Google Scholar 

  42. Holst J, Grote R, Offermann C, Ferrio JP, Gessler A, Mayer H, Rennenberg H (2010) Water fluxes within beech stands in complex terrain. Int J Biometeorol 54:23–36. doi:10.1007/s00484-009-0248-x

    PubMed  Article  Google Scholar 

  43. Holzapfel-Pschorn A, Conrad R, Seiler W (1986) Effects of vegetation on the emission of methane from submerged paddy soil. Plant Soil 92:223–233

    Article  CAS  Google Scholar 

  44. Huang Y, Sass RL, Fisher FM Jr (1998) A semi-empirical model of methane emission from flooded rice paddy soils. Glob Chang Biol 4:247–268. doi:10.1046/j.1365-2486.1998.00129.x

    Article  Google Scholar 

  45. Inubushi K, Wada H, Takai Y (1984) Easily decomposable organic matter in paddy soil. IV. Relationship between reduction process and organic matter decomposition. Soil Sci Plant Nutr 30:189–198

    Article  CAS  Google Scholar 

  46. Jenkinson DS, Andrew SPS, Lynch JM, Goss MJ, Tinker PB (1990) The turnover of organic carbon and nitrogen in soil [and discussion]. Philos Trans R Soc B Biol Sci 329:361–368. doi:10.1098/rstb.1990.0177

    Article  CAS  Google Scholar 

  47. Johansson C (1984) Field measurements of emission of nitric oxide from fertilized and unfertilized forest soils in Sweden. J Atmos Chem 1:429–442. doi:10.1007/BF00053804

    Article  CAS  Google Scholar 

  48. Johansson C, Granat L (1984) Emission of nitric oxide from arable land. Tellus 36B:25–37. doi:10.1111/j.1600-0889.1984.tb00048.x

    Article  CAS  Google Scholar 

  49. Kesik M, Ambus P, Baritz R, Brüggemann N, Butterbach-Bahl K, Damm M, Duyzer J, Horvath L, Kiese R, Kitzler B, Leip A, Li C, Pihlatie M, Pilegaard K, Seufert G, Simpson D, Skiba U, Smiatek G, Vesala T, Zechmeister-Boltenstern S (2005) Inventories of N2O and NO emissions from European forest soils. Biogeosciences 2:353–375. doi:10.5194/bg-2-353-2005

    Article  CAS  Google Scholar 

  50. Kiese R, Li C, Hilbert DW, Papen H, Nutterbach-Bahl K (2005) Regional application of PnET-N-DNDC for estimating the N2O source strength of tropical rainforests in the Wet tropics of Australia. Glob Chang Biol 11:128–144. doi:10.1111/j.1365-2486.2004.00873.x

    Article  Google Scholar 

  51. Kiese R, Heinzeller C, Werner C, Wochele S, Grote R, Butterbach-Bahl K (2011) Quantification of nitrate leaching from German forest ecosystems by use of a process oriented biogeochemical model. Environ Pollut 159:3204–3214. doi:10.1016/j.envpol.2011.05.004

    PubMed  Article  CAS  Google Scholar 

  52. Kögel-Knabner I, Amelung W, Cao Z, Fiedler S, Frenzel P, Jahn R, Kalbitz K, Kölbl A, Schloter M (2010) Biogeochemistry of paddy soils. Geoderma 157:1–14. doi:10.1016/j.geoderma.2010.03.009

    Article  CAS  Google Scholar 

  53. Kraft P, Vaché KB, Frede H-G, Breuer L (2011) CMF: a hydrological programming language extension for integrated catchment models. Environ Model Softw 26:828–830

    Article  Google Scholar 

  54. Kukal SS, Aggarwal GC (2002) Percolation losses of water in relation to puddling intensity and depth in a sandy loam rice (Oryza sativa) field. Agric Water Manag 57:49–59. doi:10.1016/S0378-3774(02)00037-9

    Article  Google Scholar 

  55. Kuzyakov Y, Cheng W (2001) Photosynthesis controls of rhizosphere respiration and organic matter decomposition. Soil Biol Biochem 33:1915–1925. doi:10.1016/S0038-0717(01)00117-1

    Article  CAS  Google Scholar 

  56. Kuzyakov Y, Domanski G (2000) Carbon input by plants into the soil. Review. J Plant Nutr Soil Sci 163:421–431

    Article  CAS  Google Scholar 

  57. Li C (2000) Modeling trace gas emissions from agricultural ecosystems. Nutr Cycl Agroecosyst 58:259–276

    Article  CAS  Google Scholar 

  58. Li C, Frolking S, Frolking TA (1992) A model of nitrous oxide evolution from soil driven by rainfall events: 1. Model structure and sensitivity. J Geophys Res 97:9759–9776

    Article  CAS  Google Scholar 

  59. Li C, Aber J, Stange F, Butterbach-Bahl K, Papen H (2000) A process-oriented model of N2O and NO emissions from forest soils: 1. Model development. J Geophys Res 105:4369–4384

    Article  CAS  Google Scholar 

  60. Li C, Mosier AR, Wassmann R, Cai Z, Zheng X, Huang Y, Tsuruta H, Boonjawat J, Lantin R (2004) Modeling greenhouse gas emissions from rice-based production systems: sensitivity and upscaling. Glob Biogeochem Cycles 18:GB1043. doi:10.1029/2003GB002045

    Article  CAS  Google Scholar 

  61. Li C, Frolking S, Butterbach-Bahl K (2005) Carbon sequestration can increase nitrous oxide emissions. Clim Chang 72:321–338

    Article  CAS  Google Scholar 

  62. Lu Y, Arah JRM, Wassman R, Neue HU (2000) Simulation of methane production in anaerobic rice soils by a simple two-pool model. Nutr Cycl Agroecosyst 58:277–284

    Article  CAS  Google Scholar 

  63. Masscheleyn PH, DeLaune RD, Patrick WH Jr (1993) Methane and nitrous oxide emissions from laboratory measurements of rice soil suspension: effect of soil oxidation-reduction status. Chemosphere 26:251–260. doi:10.1016/0045-6535(93)90426-6

    Article  CAS  Google Scholar 

  64. Matthews RB, Wassmann R, Arah JRM (2000a) Using a crop-soil simulation model and GIS techniques to assess methane emissions from rice fields in Asia. I. Model development. Nutr Cycl Agroecosyst 58:11–159

    Google Scholar 

  65. Matthews RB, Wassmann R, Buendia LV, Knox JW (2000b) Using a crop-soil simulation model and GIS techniques to assess methane emissions from rice fields in Asia. II. Model validation and sensitivity analysis. Nutr Cycl Agroecosyst 58:161–177

    Article  CAS  Google Scholar 

  66. Moormann FR, van Breemen N (1978) Rice: soil, water, land. IRRI, Los Banos

    Google Scholar 

  67. Parton WJ, Hartman M, Ojima DS, Schimel DS (1998) DAYCENT and its land surface submodel: description and testing. Glob Planet Chang 19:35–48

    Article  Google Scholar 

  68. Potter CS (1997) An ecosystem simulation model for methane production and emission from wetlands. Glob Biogeochem Cycles 11:495–506

    Article  CAS  Google Scholar 

  69. Rijsberman FR (2006) Water scarcity: fact or fiction? Agric Water Manag 80:5–22. doi:10.1016/j.agwat.2005.07.001

    Article  Google Scholar 

  70. Roger PA (1996) Biology and management of the floodwater ecosystem in rice fields. IRRI, Los Banos

    Google Scholar 

  71. Roger PA, Ladha JK (1992) Biological N2 fixation in wetland rice fields: estimation and contribution to nitrogen balance. Dev Plant Soil Sci 49:41–55

    Article  Google Scholar 

  72. Saito M, Watanabe I (1978) Organic matter production in rice field flood water. Soil Sci Plant Nutr 24(3):427–440

    Article  Google Scholar 

  73. Sass RL, Fisher FM, Harcombe PA, Turner FT (2012) Methane production and emission in a Texas rice field. Glob Biogeochem Cycles 4(1):47–68. doi:10.1029/GB004i001p00047

    Article  Google Scholar 

  74. Schütz H, Holzapfel-Pschorn A, Conrad R, Conrad R, Rennenberg H, Seiler W (1989a) A 3-year continuous record on the influence of daytime, season, and fertilizer treatment on methane emission rates from an Italian rice paddy. J Geophys Res 94:16405–16416. doi:10.1029/JD094iD13p16405

    Article  Google Scholar 

  75. Schütz H, Seiler W, Conrad R (1989b) Processes involved in formation and emission of methane in rice paddies. Biogeochemistry 7:33–53

    Article  Google Scholar 

  76. Segers R (1998) Methane production and methane consumption: a review of processes underlying wetland methane fluxes. Biogeochemistry 41:23–51

    Article  CAS  Google Scholar 

  77. Slemr F, Seiler W (1984) Field measurements of NO and NO2 emissions from fertilized and unfertilized soils. J Atmos Chem 2:1–24. doi:10.1007/BF00127260

    Article  CAS  Google Scholar 

  78. Slemr F, Seiler W (1991) Field study of environmental variables controlling the NO emissions from soil and the NO compensation point. J Geophys Res 96:13017–13031. doi:10.1029/91JD01028

    Article  CAS  Google Scholar 

  79. Smakgahn K, Fumoto T, Yagi K (2009) Validation of revised DNDC model for methane emissions from irrigated rice fields in Thailand and sensitivity analysis of key factors. J Geophys Res 114:G02017. doi:10.1029/2008JG000775

    Google Scholar 

  80. Spitters CJT, Toussaint HAJM, Goudriaan J (1986) Separating the diffuse and direct component of global radiation and its implications for modeling canopy photosynthesis Part I. Components of incoming radiation. Agric For Meteorol 38:217–229. doi:10.1016/0168-1923(86)90061-4

    Article  Google Scholar 

  81. Stange F, Butterbach-Bahl K, Papen H, Zechmeister-Boltenstern S, Li C, Aber J (2000) A process-oriented model of N2O and NO emissions from forest soils: 2. Sensitivity analysis and validation. J Geophys Res 105:4385–4398. doi:10.1029/1999JD900948

    Article  CAS  Google Scholar 

  82. Syakila A, Kroeze C (2011) The global nitrous oxide budget revisited. Greenh Gas Meas Manag 1:17–26. doi:10.3763/ghgmm.2010.0007

    Article  CAS  Google Scholar 

  83. Thornthwaite CW, Mather JR (1957) Instructions and tables for computing potential evapotranspiration and the water balance. Publications in climatology, vol X, no 3. Drexel Institute of Technology, Laboratory of Climatology, Centerton

    Google Scholar 

  84. Timsina J, Buresh RJ, Dobermann A, Dixon J (2011) Rice-maize systems in Asia: current situation and potential. International Rice Research Institute and International Maize and Wheat Improvement Center, Los Baños

    Google Scholar 

  85. Tuong TP, Bouman BAM, Mortimer M (2005) More rice, less water-integrated approaches for increasing water productivity in irrigated rice-based systems in Asia. Plant Prod Sci 8:231–241. doi:10.1626/pps.8.231

    Article  Google Scholar 

  86. van Bodegom PM, Scholten JCM (2001) Microbial processes of CH4 production in a rice paddy soil: model and experimental validation. Geochim Cosmochim Acta 65:2055–2066. doi:10.1016/S0016-7037(01)00563-4

    Article  Google Scholar 

  87. van Bodegom PM, Stams AJM (1999) Effects of alternative electron acceptors and temperature on methanogenesis in rice paddy soils. Matter Energy Fluxes Anthropoc Environ 39:167–182. doi:10.1016/S0045-6535(99)00101-0

    Google Scholar 

  88. van Bodegom PM, Leffelaar PA, Stams AJM, Wassmann R (2000) Modeling Methane Emissions from Rice Fields: Variability, Uncertainty, and Sensitivity Analysis of Processes Involved. Nutrient Cycling in Agroecosystems 58:231–248–248. doi: 10.1023/A:1009854905333

  89. van Bodegom PM, Wassmann R, Metra-Corton TM (2001a) A process-based model for methane emission predictions from flooded rice paddies. Glob Biogeochem Cycles 15:247–263

    Article  Google Scholar 

  90. van Bodegom PM, Goudriaan J, Leffelaar P (2001b) A mechanistic model on methane oxidation in a rice rhizosphere. Biogeoemistry 55:145–177. doi:10.1023/A:1010640515283

    Article  Google Scholar 

  91. Wang ZP, DeLaune RD, Patrick WH, Masscheleyn PH (1993) Soil redox and pH effects on methane production in a flooded rice soil. Soil Sci Soc Am J 57:382–385. doi:10.2136/sssaj1993.03615995005700020016x

    Article  CAS  Google Scholar 

  92. Wassmann R, Neue HU, Lantin RS, Buendia LV, Rennenberg H (2000a) Characterization of methane emissions from rice fields in Asia. I. Comparison among field sites in five countries. Nutr Cycl Agroecosyst 58:1–12

    Article  CAS  Google Scholar 

  93. Wassmann R, Buendia LV, Lantin RS, Bueno CS, Lubigan LA, Umali A, Nocon NN, Javellana AM, Neue HU (2000b) Mechanisms of crop management impact on methane emissions from rice fields in Los Baños, Philippines. Nutr Cycl Agroecosyst 58:107–119. doi:10.1023/A:1009838401699

    Article  CAS  Google Scholar 

  94. Weller S, Kraus D, Ayag KRP, Wassmann R, Butterbach-Bahl K, Kiese R (2014) Methane and nitrous oxide emissions from rice and maize production in diversified rice cropping systems. Nutrient Cycling in Agroecosystems (under review)

  95. Werner C, Butterbach-Bahl K, Haas E, Hickler T, Kiese R (2007) A global inventory of N2O emissions from tropical rainforest soils using a detailed biogeochemical model. Global Biogeochem Cycles 21. doi:10.1029/2006GB002909

  96. Witt C, Cassman KG, Ottow JCG, Biker U (1998) Soil microbial biomass and nitrogen supply in an irrigated lowland rice soil as affected by crop rotation and residue management. Biol Fertil Soils 28:71–80. doi:10.1007/s003740050465

    Article  CAS  Google Scholar 

  97. Witt C, Cassman KG, Olk DC, Biker U, Liboon SP, Samson MI, Ottow JCG (2000) Crop rotation and residue management effects on carbon sequestration, nitrogen cycling and productivity of irrigated rice systems. Plant Soil 225:263–278. doi:10.1023/A:1026594118145

    Article  CAS  Google Scholar 

  98. Xu S, Jaffé PR, Mauzerall DL (2007) A process-based model for methane emission from flooded rice paddy systems. Ecol Model 205:475–491

    Article  CAS  Google Scholar 

  99. Yao H, Conrad R, Wassmann R, Neue HU (1999) Effect of soil characteristics on sequential reduction and methane production in sixteen rice paddy soils from China, the Philippines, and Italy. Biogeochemistry 47:269–295. doi:10.1007/BF00992910

    Article  CAS  Google Scholar 

  100. Yao H, Yagi K, Nouchi I (2000) Importance of physical plant properties on methane transport through several rice cultivars. Plant Soil 222:83–93

    Article  CAS  Google Scholar 

  101. Yao Z, Zheng X, Wang R, Xie B, Butterbach-Bahl K, Zhu J (2013) Nitrous oxide and methane fluxes from a rice-wheat crop rotation under wheat residue incorporation and no-tillage practices. Atmos Environ 79:641–649

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the German Research Foundation (DFG) for its generous funding (FOR 1701, “Introducing Non-Flooded Crops in Rice-Dominated Landscapes: Impacts on Carbon, Nitrogen and Water Cycles (ICON)”, BU1173/13-1 and KI1413).

Furthermore, funding was provided via the knowledge hub of the Joint Research Programming Initiative on Agriculture, Food Security and Climate Change (FACCE-JPI) within the project “Modelling European Agriculture with Climate Change for Food Security” (MACSUR) and the ÉCLAIRE project (Effects of Climate Change on Air Pollution and Response Strategies for European Ecosystems) funded by the EU’s Seventh Framework Programme for Research and Technological Development (FP7).

KBB and RW received additional financial support via the Climate Change, Agricultural and Food Security Programme (CCAFS) of CGIAR Institutes.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Klaus Butterbach-Bahl.

Additional information

Responsible Editor: Ute Skiba.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kraus, D., Weller, S., Klatt, S. et al. A new LandscapeDNDC biogeochemical module to predict CH4 and N2O emissions from lowland rice and upland cropping systems. Plant Soil 386, 125–149 (2015). https://doi.org/10.1007/s11104-014-2255-x

Download citation

Keywords

  • Methane
  • Nitrous oxide
  • Paddy rice
  • Maize
  • Model