Skip to main content

Advertisement

Log in

Organic matter stocks increase with degree of invasion in temperate inland wetlands

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Aims

Wetlands provide a variety of ecosystem services, including nitrogen retention and carbon sequestration, and these services are linked through the storage and transformation of organic matter that can be altered by invasive plant species. We hypothesized that within inland temperate wetlands, the degree of invasion by Phragmites australis (Cav) Trin. Ex Steud, Phalaris arundinacea L. and Typha x glauca Godr. X would be positively correlated with soil and ecosystem C and N stocks because these invasive plants produce large amounts of recalcitrant litter.

Methods

We surveyed 24 inland wetlands in Michigan for plant community composition and aboveground biomass, litter, soil, and ecosystem C and N stocks. We also performed laboratory incubations to determine C and N mineralization rates from soil collected under the most dominant species.

Results

Both soil and ecosystem C stocks increased due to the presence of invasive species, as did aboveground biomass C and N stocks. Additionally, there were significant differences in C and N mineralization in soil collected from monocultures of each invasive species (Phalaris > Typha > Phragmites) linked to the quality of their litter (C/N ratios).

Conclusion

These results suggest that wetland C and N stocks are correlated with degree of invasion, and that these effects can be linked to key traits, including litter quality and aboveground biomass production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Allendorf FW (2003) Introduction: population biology, evolution, and control of invasive species. Conserv Biol 17:24–30

    Article  Google Scholar 

  • Anderson CJ, Mitsch WJ (2006) Sediment, carbon, and nutrient accumulation at two 10-year-old created riverine marshes. Wetlands 26:779–792

    Article  Google Scholar 

  • Angeloni NL, Jankowski KJ, Tuchman NC, Kelly JJ (2006) Effects of an invasive cattail species (Typha xglauca) on sediment nitrogen and microbial community composition in a freshwater wetland. FEMS Microbiol Lett 263:86–92

    Article  CAS  PubMed  Google Scholar 

  • Bourgeau-Chavez LL, Kowalski KP, Carlson Mazur ML, Scarbrough KA, Powell RB, Brooks CN, Huberty B, Jenkins LK, Banda EC, Galbraith DM, Laubach ZM, Riordan K (2012) Mapping invasive Phragmites australis in the coastal Great Lakes with ALOS PALSAR satellite imagery for decision support. J Great Lakes Res 39:65–77

    Article  Google Scholar 

  • Brinson MM (1993) A hydrogeomorphic classification for wetlands. U. S. Army Corps of Engineers Waterways Experiment Station, Vicksburg, MS, USA. Wetlands Research Program Technical Report WRP-DE, −4

  • Bruland GL, Richardson CJ, Whalen SC (2006) Spatial variability of denitrification potential and related soil properties in created, restored, and paired natural wetlands. Wetlands 26:1042

    Article  Google Scholar 

  • Bubier JL, Bhatia G, Moore TR (2003) Spatial and temporal variability in growing season net ecosystem carbon dioxide exchange at a large peatland in Ontario, Canada. Ecosystems 6:353–367

    CAS  Google Scholar 

  • Burnham KP, Anderson DR (2002) Model selection and multimodel inference: a practical information-theoretic approach, 2nd edn. Springer, New York

    Google Scholar 

  • Burnham KP, Anderson DR (2004) Multimodel inference: understanding AIC and BIC in model selection. Sociol Methods Res 33:261–304

    Article  Google Scholar 

  • Cardinale BJ, Srivastava DS, Duffy JE, Wright JP, Downing AL, Sankaran M, Jouseau C (2006) Effects of biodiversity on the functioning of trophic groups and ecosystems. Nature 443:989–992

    Article  CAS  PubMed  Google Scholar 

  • Chapin FS, Matson PA, Vitousek PM (2011) Principles of terrestrial ecosystem ecology. Springer, New York

    Google Scholar 

  • Chapman SK, Langley JA, Hart SC, Koch GW (2006) Plants actively control nitrogen cycling: uncorking the microbial bottleneck. New Phytol 169:27–34

    Article  CAS  PubMed  Google Scholar 

  • Davidson EA, Trumbore SE, Amundson R (2000) Soil warming and organic carbon content. Nature 408:789–790

    Article  CAS  PubMed  Google Scholar 

  • Davis MA, Grime JP, Thompson K (2000) Fluctuating resources in plant communities: a general theory of invasibility. J Ecol 88:528–534

    Article  Google Scholar 

  • Doane TA, Horwath WR (2003) Spectrophotometric determination of nitrate with a single reagent. Anal Lett 36:2713–2722

    Article  CAS  Google Scholar 

  • Donato DC, Kauffman JB, Murdiyarso D, Kurnianto S, Stidham M, Kanninen M (2011) Mangroves among the most carbon-rich forests in the tropics. Nat Geosci 4:293–297

    Article  CAS  Google Scholar 

  • Ehrenfeld J (2003) Effects of exotic plant invasions on soil nutrient cycling processes. Ecosystems 6:503–523

    Article  CAS  Google Scholar 

  • Eschtruth AK, Battles JJ (2009) Assessing the relative importance of disturbance, herbivory, diversity, and propagule pressure in exotic plant invasion. Ecol Monogr 79:265–280

    Article  Google Scholar 

  • Euliss NH, Gleason RA, Olness A, McDougal RL, Murkin HR, Robarts RD, Bourbonniere RA, Warner BG (2006) North American prairie wetlands are important non-forested land-based carbon storage sites. Sci Total Environ 361:179–188

    Article  CAS  PubMed  Google Scholar 

  • Eviner VT (2004) Plant traits that influence ecosystem processes vary independently among species. Ecology 85:2215–2229

    Article  Google Scholar 

  • Eviner VT, Chapin FS III (2003) Functional matrix: a conceptual framework for predicting multiple plant effects on ecosystem processes. Annu Rev Ecol Evol Syst 34:455–485

    Article  Google Scholar 

  • Farrer EC, Goldberg DE (2009) Litter drives ecosystem and plant community changes in cattail invasion. Ecol Appl 19:398–412

    Article  PubMed  Google Scholar 

  • Fickbohm S, Zhu W (2006) Exotic purple loosestrife invasion of native cattail freshwater wetlands: Effects on organic matter distribution and soil nitrogen cycling. Appl Soil Ecol 32:123–131

    Article  Google Scholar 

  • Findlay SEG, Dye S, Kuehn KA (2002) Microbial growth and nitrogen retention in litter of Phragmites australis compared to Typha angustifolia. Wetlands 22:616–625

    Article  Google Scholar 

  • Fourqurean JW, Duarte CM, Kennedy H, Marbà N, Holmer M, Mateo MA, Apostolaki ET, Kendrick GA, Krause-Jensen D, McGlathery KJ, Serrano O (2012) Seagrass ecosystems as a globally significant carbon stock. Nat Geosci 5:505–509

    Article  CAS  Google Scholar 

  • Galloway JN, Aber JD, Erisman JANW, Sybil P, Howarth RW, Cowling EB, Cosby BJ (2003) The nitrogen cascade. Bioscience 53:341–356

    Article  Google Scholar 

  • Gough CM, Vogel CS, Schmid HP, Curtis PS, Gough CM, Vogel CS, Schmid HP, Curtis PS (2008) Controls on annual forest carbon storage: lessons from the past and predictions for the future. Bioscience 58:609–622

    Article  Google Scholar 

  • Gough L, Gross KL, Cleland EE, Clark CM, Collins SL, Fargione JE, Pennings SC, Suding KN (2012) Incorporating clonal growth form clarifies the role of plant height in response to nitrogen addition. Oecologia 169:1053–1062

    Article  PubMed  Google Scholar 

  • Green EK, Galatowitsch SM (2001) Differences in wetland plant community establishment with additions of nitrate-N and invasive species (Phalaris arundinacea and Typha xglauca). Can J Bot 79:170–178

    Google Scholar 

  • Green E, Galatowitsch S (2002) Effects of Phalaris arundinacea and nitrate-N addition on the establishment of wetland plant communities. J Appl Ecol 39:134–144

    Article  CAS  Google Scholar 

  • Güsewell S, Freeman C (2005) Nutrient limitation and enzyme activities during litter decomposition of nine wetlands species in relation in litter N:P ratios. Funct Ecol 19:582–593

    Article  Google Scholar 

  • Harden J, Trumbore S, Stocks BJ, Hirsch A, Gower ST, O’neill KP, Kasischke ES (2000) The role of fire in the boreal carbon budget. Glob Chang Biol 6:174–184

    Article  Google Scholar 

  • Hejda M, Pyšek P, Jarošík V (2009) Impact of invasive plants on the species richness, diversity and composition of invaded communities. J Ecol 97:393–403

    Article  Google Scholar 

  • Herr-Turoff A, Zedler JB (2005) Does wet prairie vegetation retain more nitrogen with or without Phalaris arundinacea invasion? Plant Soil 277:19–34

    Article  CAS  Google Scholar 

  • Hogg E, Lieffers V, Wein R (1992) Potential carbon losses from peat profiles: effects of temperature, drought cycles, and fire. Ecol Appl 2:298–306

    Article  Google Scholar 

  • Houlahan JE, Findlay CS (2004) Effect of invasive plant species on temperate wetland plant diversity. Conserv Biol 18:1132–1138

    Article  Google Scholar 

  • Hudon C (2004) Shift in wetland plant communities and biomass following low-level episodes in the St. Lawrence River: looking into the future. Can J Fish Aquat Sci 61:603–617

    Article  Google Scholar 

  • Kercher SM, Zedler JB (2004) Multiple disturbances accelerate invasion of reed canary grass (Phalaris arundinacea L.) in a mesocosm study. Oecologia 138:455–464

    Article  PubMed  Google Scholar 

  • Lafleur PM, Moore TR, Roulet NT, Frolking S (2005) Ecosystem respiration in a cool temperate bog depends on peat temperature but not water table. Ecosystems 8:619–629

    Article  CAS  Google Scholar 

  • Lavergne S, Molofsky J (2004) Reed canary grass (Phalaris arundinacea) as a biological model in the study of plant invasions. Crit Rev Plant Sci 23:415–429

    Article  Google Scholar 

  • Lawrence BA, Jackson RD, Kucharik CJ (2013) Testing the stability of carbon pools stored in tussock sedge meadows. Appl Soil Ecol 71:48–57

    Article  Google Scholar 

  • Liao CZ, Luo YQ, Jiang LF, Zhou XH, Wu XW, Fang CM, Chen JK, Li B (2007) Invasion of Spartina alterniflora enhanced ecosystem carbon and nitrogen stocks in the Yangtze Estuary, China. Ecosystems 10:1351–1361

    Article  CAS  Google Scholar 

  • Liao C, Peng R, Luo Y, Zhou X, Wu X, Fang C, Chen J, Li B (2008) Altered ecosystem carbon and nitrogen cycles by plant invasion: a meta-analysis. New Phytol 177:706–714

    Article  CAS  PubMed  Google Scholar 

  • Martina JP, von Ende CN (2012) Highly plastic response in morphological and physiological traits to light, soil-N and moisture in the model invasive plant, Phalaris arundinacea. Environ Exp Bot 82:43–53

    Article  Google Scholar 

  • McClain ME, Boyer EW, Dent CL, Gergel SE, Grimm NB, Groffman PM, Hart SC, Harvey JW, Johnston CA, Mayorga E, McDowell WH, Pinay G (2003) Biogeochemical hot spots and hot moments at the interface of terrestrial and aquatic ecosystems. Ecosystems 6:301–312

    Article  CAS  Google Scholar 

  • McGill BJ, Enquist BJ, Weiher E, Westoby M (2006) Rebuilding community ecology from functional traits. Trends Ecol Evol 21:178–185

    Article  PubMed  Google Scholar 

  • Mcleod E, Chmura GL, Bouillon S, Salm R, Björk M, Duarte CM, Lovelock CE, Schlesinger WH, Silliman BR (2011) A blueprint for blue carbon: toward an improved understanding of the role of vegetated coastal habitats in sequestering CO2. Front Ecol Environ 9:552–560

    Article  Google Scholar 

  • Melillo JM, Aber JD, Muratore JF (1982) Nitrogen and lignin control of hardwood leaf litter decomposition dynamics. Ecology 63:621–626

    Article  CAS  Google Scholar 

  • Merriam R, Feil E (2002) The potential impact of an introduced shrub on native plant diversity and forest regeneration. Biol Invasions 4:369–373

    Article  Google Scholar 

  • Minchinton T, Bertness M (2003) Disturbance-mediated competition and the spread of Phragmites australis in a coastal marsh. Ecol Appl 13:1400–1416

    Article  Google Scholar 

  • Mitra S, Wassmann R, Vlek P (2005) An appraisal of global wetland area and its organic carbon stock. Curr Sci 88:25–35

    CAS  Google Scholar 

  • Ni J (2004) Estimating net primary productivity of grasslands from field biomass measurements in temperate northern China. Plant Ecol 174:217–234

    Article  Google Scholar 

  • Nieveen JP, Jacobs CMJ, Jacobs AFG (1998) Diurnal and seasonal variation of carbon dioxide exchange from a former true raised bog. Glob Chang Biol 4:823–834

    Article  Google Scholar 

  • Parton W, Silver WL, Burke IC, Grassens L, Harmon ME, Currie WS, King JY, Adair EC, Brandt LA, Hart SC, Fasth B (2007) Global-scale similarities in nitrogen release patterns during long-term decomposition. Science 315:361–364

    Article  CAS  PubMed  Google Scholar 

  • Reddy KR, Delaune RD (2008) Biogeochemistry of wetlands. CRC Press, Boca Raton

    Book  Google Scholar 

  • Rickey MA, Anderson RC (2004) Effects of nitrogen addition on the invasive grass Phragmites australis and a native competitor Spartina pectinata. J Appl Ecol 41:888–896

    Article  Google Scholar 

  • Ringuet S, Sassano L, Johnson ZI (2011) A suite of microplate reader-based colorimetric methods to quantify ammonium, nitrate, orthophosphate and silicate concentrations for aquatic nutrient monitoring. J Environ Monit 13:370–376

    Article  CAS  PubMed  Google Scholar 

  • Robertson GP, Wedin PM, Groffman PM, Holland EA, Nadelhoffer KJ, Harris D (1999) Soil carbon and nitrogen availability: nitrogen mineralization, nitrification, and soil respiration potentials. In: Robertson GP, Bledsoe CS, Coleman DC, Sollins P (eds) Standard soil methods for long term ecological research. Oxford University Press, New York, pp 258–272

    Google Scholar 

  • Roulet NT (2000) Peatlands, carbon storage, greenhouse gases, and the Kyoto protocol: prospects and significance for Canada. Wetlands 20:605–615

    Article  Google Scholar 

  • Sakai AK, Allendorf FW, Holt JS, Lodge DM, Molofsky J, With KA, Baughman S, Cabin RJ, Cohen JE, Ellstrand NC, McCauley D, O’Neil P, Parker IM, Thompson JN, Weller SG (2001) The population biology of invasive species. Annu Rev Ecol Syst 32:305–332

    Article  Google Scholar 

  • Sax D, Gaines SD (2003) Species diversity: from global decreases to local increases. Trends Ecol Evol 18:561–566

    Article  Google Scholar 

  • Scurlock J, Johnson K, Olson R (2002) Estimating net primary productivity from grassland biomass dynamics measurements. Glob Chang Biol 8:736–753

    Article  Google Scholar 

  • Seefeldt SS, McCoy SD (2003) Measuring plant diversity in the tall three tip sagebrush steppe: influence of previous grazing management practices. Environ Manag 32:234–245

    Article  Google Scholar 

  • Solondz DS, Petrone RM, Devito KJ (2008) Forest floor carbon dioxide fluxes within an upland-peatland complex in the Western Boreal Plain, Canada. Ecohydrology 1:361–376

    Article  CAS  Google Scholar 

  • Spyreas G, Wilm BW, Plocher AE, Ketzner DM, Matthews JW, Ellis JL, Heske EJ (2010) Biological consequences of invasion by reed canary grass (Phalaris arundinacea). Biol Invasions 12:1253–1267

    Article  Google Scholar 

  • Stauffer RE (1985) Use of solute tracers released by weathering to estimate groundwater inflow to seepage lakes. Environ Sci Technol 19:405–411

    Article  CAS  PubMed  Google Scholar 

  • Sutton-Grier AE, Wright JP, Richardson CJ (2013) Different plant traits affect two pathways of riparian nitrogen removal in a restored freshwater wetland. Plant Soil 365:41–57

    Article  CAS  Google Scholar 

  • Taylor BR, Parkinson D, Parsons WFJ (1989) Nitrogen and lignin content as predictors of litter decay rates: a microcosm test. Ecology 70:97–104

    Article  Google Scholar 

  • Tilman D, Knops J, Wedin D, Reich P, Ritchie M, Siemann E (1997) The influence of functional diversity and composition on ecosystem processes. Science 277:1300–1302

    Article  CAS  Google Scholar 

  • Vilà M, Espinar JL, Hejda M, Hulme PE, Jarošík V, Maron JL, Pergl J, Schaffner U, Sun Y, Pyšek P (2011) Ecological impacts of invasive alien plants: a meta-analysis of their effects on species, communities and ecosystems. Ecol Lett 14:702–708

    Article  PubMed  Google Scholar 

  • Vitousek PM (1982) Nutrient cycling and nutrient use efficiency. Am Nat 19:553–572

    Article  Google Scholar 

  • Vymazal J, Kropfelova L (2005) Growth of Phragmites australis and Phalaris arundinacea in constructed wetlands for wastewater treatment in the Czech Republic. Ecol Eng 25:606–621

    Article  Google Scholar 

  • Wardle DA, Bardgett RD, Klironomos JN, Setälä H, Van Der Putten WH, Wall DH (2004) Ecological linkages between aboveground and belowground biota. Science 304:1629–1633

    Article  CAS  PubMed  Google Scholar 

  • Weatherburn MW (1967) Phenol-hypochlorite reaction for determination of ammonia. Anal Chem 39:971–974

    Article  CAS  Google Scholar 

  • Weintraub MN, Schimel JP (2003) Interactions between carbon and nitrogen mineralization and soil organic matter chemistry in arctic tundra soils. Ecosystems 6:129–143

    Article  CAS  Google Scholar 

  • Westoby M, Wright IJ (2006) Land-plant ecology on the basis of functional traits. Trends Ecol Evol 21:261–268

    Article  PubMed  Google Scholar 

  • Wetzel PR, van der Valk A (1998) Effects of nutrient and soil moisture on competition between Carex stricta, Phalaris arundinacea, and Typha latifolia. Plant Ecol 138:179–190

    Article  Google Scholar 

  • Whitmire SL, Hamilton SK (2008) Rates of anaerobic microbial metabolism in wetlands of divergent hydrology on a glacial landscape. Wetlands 28:703–714

    Article  Google Scholar 

  • Wilcox K, Petrie S, Maynard L, Meyer S (2003) Historical distribution and abundance of Phragmites australis at Long Point, Lake Erie, Ontario. J Great Lakes Res 29:664–680

    Article  Google Scholar 

  • Windham L, Lathrop RG (1999) Effects of Phragmites australis (common reed) invasion on aboveground biomass and soil properties in brackish tidal marsh of the Mullica River, New Jersey. Estuar Coasts 22:927–935

    Article  Google Scholar 

  • Woo I, Zedler JB (2002) Can nutrients alone shift a sedge meadow towards dominance by the invasive Typha x glauca. Wetlands 22:509–521

    Article  Google Scholar 

  • Xu X, Hirata E (2005) Decomposition patterns of leaf litter of seven common canopy species in a subtropical forest: N and P dynamics. Plant Soil 273:279–289

    Article  CAS  Google Scholar 

  • Zedler JB (2003) Wetlands at your service: reducing impacts of agriculture at the watershed scale. Front Ecol Environ 1:65–72

    Article  Google Scholar 

  • Zedler JB, Kercher SM (2004) Causes and consequences of invasive plants in wetlands: opportunities, opportunists, and outcomes. Crit Rev Plant Sci 23:431–452

    Article  Google Scholar 

  • Zhou L, Zhou G, Jia Q (2009) Annual cycle of CO2 exchange over a reed (Phragmites australis) wetland in Northeast China. Aquat Bot 91:91–98

    Article  CAS  Google Scholar 

  • Zuur AF, Ieno EN, Walker NJ, Saveliev AA, Smith GM (2009) Mixed effects models and extensions in ecology with R. Springer, New York

    Book  Google Scholar 

Download references

Acknowledgments

This research was funded by a United States Environmental Protection Agency (EPA) Science to Achieve Results (STAR) Graduate Fellowship to J.M., a Society of Wetland Scientists Student Research Grant to J.M., and the Biogeochemistry Environmental Research Initiative at Michigan State University. EPA has not officially endorsed this publication and the views expressed herein may not reflect the views of the EPA. We thank Spencer Rubin and Ryan O’Connor for assistant in the field and laboratory, Kenneth Elgersma and Carl von Ende for comments on statistical analyses, and Katherine Gross and Jay Lennon for comments on early drafts of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. P. Martina.

Additional information

Responsible Editor: Katja Klumpp.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martina, J.P., Hamilton, S.K., Turetsky, M.R. et al. Organic matter stocks increase with degree of invasion in temperate inland wetlands. Plant Soil 385, 107–123 (2014). https://doi.org/10.1007/s11104-014-2211-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-014-2211-9

Keywords

Navigation