Skip to main content
Log in

Relation of fine root distribution to soil C in a Cunninghamia lanceolata plantation in subtropical China

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Background and aims

Growth and distribution of fine roots closely depend on soil resource availability and affect soil C distribution in return. Understanding of relationships between fine root distribution and soil C can help to predict the contribution of fine root turnover to soil C accumulation.

Methods

A study was conducted in a subtropical Cunninghamia lanceolata plantation to assess the fine root mass density (FRMD), fine root C density (FRCD) of different fine root groups as well as their relations with soil C.

Results

The FRMD and FRCD of short-lived roots, dead roots and herb roots peaked in the 0–10 cm soil layer and decreased with soil depth, while FRMD, FRCD of long-lived roots peaked in the 10–20 cm soil layer. Soil C was positively related to FRMD and FRCD of total fine roots (across all three soil layers), dead roots (0–10 cm) and herb roots (10–20 cm) as well as FRCD of short-lived roots (20–40 cm) (P <0.05).

Conclusions

Soil C was mainly affected by herb roots in upper soil layers and by woody plant roots in deeper soil layers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Asaye Z, Zewdie S (2013) Fine root dynamics and soil carbon accretion under thinned and un-thinned Cupressus lusitanica stands in, Southern Ethiopia. Plant Soil 366:261–271

    Article  CAS  Google Scholar 

  • Bot A, Benites J (2005) Natural factors influencing the amount of organic matter. In: The importance of soil organic matter: Key to drought-resistant soil and sustained food and production. Food and agriculture organization of the united nations, Rome, pp 11–14

    Google Scholar 

  • Brown S (2002) Measuring carbon in forests: current status and future challenges. Environ Pollut 116:363–372

    Article  CAS  PubMed  Google Scholar 

  • Burke MK, Raynal DJ (1994) Fine root growth phenology, production, and turnover in a northern hardwood forest ecosystem. Plant Soil 162:135–146

    Article  CAS  Google Scholar 

  • Chen YH, Han YZ, Wang QC, Wang ZQ (2006) Seasonal dynamics of fine root biomass, root length density, specific root length, and soil resource availability in a Larix gmelini plantation. Front Biol 3:310–317

    Article  Google Scholar 

  • Clemensson-Lindell A, Persson H (1992) Effects of freezing on rhizosphere and root nutrient content using two soil sampling methods. Plant Soil 139:39–45

    Article  CAS  Google Scholar 

  • Clemmensen KE, Bahr A, Ovaskainen O, Dahlberg A, Ekblad A, Wallander H, Stenlid J, Finlay RD, Wardle DA, Lindahl BD (2013) Roots and associated fungi drive long-term carbon sequestration in boreal forest. Science 339:1615–1618

    Article  CAS  PubMed  Google Scholar 

  • Davis JP, Haines B, Coleman D, Hendrick R (2004) Fine root dynamics along an elevational gradient in the southern Appalachian Mountains, USA. Forest Ecol Manag 187:19–34

    Article  Google Scholar 

  • Domènech R, Vilà M, Gesti J, Serrasolses I (2006) Neighbourhood association of Cortaderia selloana invasion, soil properties and plant community structure in Mediterranean coastal grasslands. Acta Oecol 29(2):171–177

    Article  Google Scholar 

  • Fang S, Clark RT, Zheng Y, Iyer-Pascuzzi AS, Weitz JS, Kochian LV, Edelsbrunner H, Liao H, Benfey PN (2013) Genotypic recognition and spatial responses by rice roots. Proc Natl Acad Sci 110:2670–2675

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Finér L, Helmisaari HS, Lõhmus K, Majdi H, Brunner I, Børja I, Eldhuset E, Godbold D, Grebenc T, Konôpka B, Kraigher H, Möttönen MR, Ohashi M, Oleksyn J, Ostonen I, Uri V, Vanguelova E (2007) Variation in fine root biomass of three European tree species: Beech (Fagus sylvatica L.), Norway spruce (Picea abies L. Karst.) and Scots pine (Pinus sylvestris L.). Plant Biosys 141:394–405

    Article  Google Scholar 

  • Fitter AH (2002) Characteristics and functions of root systems. In: Waisel Y, Eshel E, Kafkafi U (eds) Plant roots, the hidden half, 3rd edn. Dekker, New York, pp 15–32

    Google Scholar 

  • Gaudinski JB, Torn MS, Riley WJ, Dawson TE, Joslin JD, Majdi H (2010) Measuring and modeling the spectrum of fine-root turnover times in three forests using isotopes, minirhizotrons, and the Radix model. Global Biogeochem Cycles 24, GB3029

    Article  Google Scholar 

  • Gower ST, Pongracic S, Landsberg JJ (1996) A global trend in belowground carbon allocation: can we use the relationship at smaller scales? Ecology 77:1750–1755

    Article  Google Scholar 

  • Guo DL, Mitchell RJ, Hendricks JJ (2004) Fine root branch orders respond differentially to carbon source-sink manipulations in a longleaf pine forest. Oecologia 140:450–457

    Article  PubMed  Google Scholar 

  • Guo D, Mitchell RJ, Withington JM, Fan PP, Hendricks JJ (2008) Endogenous and exogenous controls of root life span, mortality and nitrogen flux in a longleaf pine forest: root branch order predominates. J Ecol 96:737–745

    Article  CAS  Google Scholar 

  • Hendrick RL, Pregitzer KS (1996) Temporal and depth-related patterns of fine root dynamics in northern hardwood forests. Ecology 84:167–176

    Article  Google Scholar 

  • Howard EA, Gower ST, Foley JA, Kurcharik CJ (2004) Effects of logging on carbon dynamics of a jack pine forest in Saskatchewan, Canada. Global Change Biol 10:1267–1284

    Article  Google Scholar 

  • Jackson RB, Caldwell MM (1993) Geostatistical patterns of soil heterogeneity around individual perennial plants. Ecology 81:683–692

    Article  Google Scholar 

  • Jackson RB, Mooney HA, Schulze ED (1997) A global budget for fine root biomass, surface area, and nutrient contents. Proc Natl Acad Sci U S A 94:7362–7366

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Knops JMH, Tilman D (2000) Dynamics of soil nitrogen and carbon accumulation for 61 years after agricultural abandonment. Ecology 81(1):88–98

    Article  Google Scholar 

  • Lemenih M, Itanna F (2004) Soil carbon stocks and turnovers in various vegetation types and arable lands along an elevation gradient in southern Ethiopia. Geoderma 123:177–188

    Article  CAS  Google Scholar 

  • Leuschner C, Hertel D (2003) Fine root biomass of temperate forests in relation to soil acidity and fertility, climate, age and species. Progr Bot 64:405–438

    Article  Google Scholar 

  • Li PZ, Fan SH, Wang LH, Xu SM (2001) Productivity and turnover of fine roots in poplar tree and grass roots. Chin J Appl Ecology 12(6):829–832 (in Chinese)

    Google Scholar 

  • López B, Sabaté S, Gracia CA (2001) Vertical distribution of fine root density, length density, area index and mean diameter in a Quercus ilex forest. Tree Physiol 21:555–560

    Article  PubMed  Google Scholar 

  • Makita N, Hirano Y, Dannoura M, Kominami Y, Mizoguchi T, Ishii H, Kanazawa Y (2009) Fine root morphological traits determine variation in root respiration of Quercus serrata. Tree Physiol 29:579–585

    Article  CAS  PubMed  Google Scholar 

  • Makita N, Hirano Y, Mizoguchi T, Kominami Y, Dannoura M, Ishii H, Finér L, Kanazawa Y (2011) Very fine roots respond to soil depth: biomass allocation, morphology, and physiology in a broad-leaved temperate forest. Ecol Res 26:95–104

    Article  Google Scholar 

  • Noguchi K, Konopka B, Satomura T, Kaneko S, Takahashi M (2007) Biomass and production of fine roots in Japanese forests. J For Res 12:83–95

    Article  Google Scholar 

  • Norby RJ, Jackson RB (2000) Root dynamics and global change: seeking an ecosystem perspective. New Phytol 147:3–12

    Article  CAS  Google Scholar 

  • Olupot G, Daniel H, Lockwood P, McHenry M, McLeod M (2010) (2010) Root contributions to long-term storage of soil organic carbon: theories, mechanisms and gaps. In: Proceedings of the 19th World Congress of Soil Science: Soil Solutions for a Changing World. Brisbane, Australia, pp 112–115

    Google Scholar 

  • Pregitzer KS, Laskowski MJ, Burton AJ, Lessard VC, Zak DR (1998) Variation in sugar maple root respiration with root diameter and soil depth. Tree Physiol 18:665–670

    Article  PubMed  Google Scholar 

  • Pregitzer KS, DeForest JL, Burton AJ, Allen MF, Ruess RW, Hendrick RL (2002) Fine root architecture of nine North American trees. Ecol Monogr 72:293–309

    Article  Google Scholar 

  • Rasse DP, Rumpel C, Dignac MF (2005) Is soil carbon mostly root carbon? Mechanisms for a specific stabilization. Plant Soil 269:341–356

    Article  CAS  Google Scholar 

  • Riley WJ, Gaudinski JB, Torn MS, Dawson TE, Joslin JD, Majdi H (2009) Fine-root mortality rates in a temperate forest: estimates using radiocarbon data and numerical modeling. New Phytol 184:387–398

    Article  CAS  PubMed  Google Scholar 

  • Ruess RW, Hendrick RL, Burton AJ, Pregitzer KS, Sveinbjornssön B, Allen MF, Maurer GE (2003) Coupling fine root dynamics with ecosystem carbon cycling in black spruce forests of interior Alaska. Ecol Monogr 73(4):643–662

    Article  Google Scholar 

  • Ryel RJ, Caldwell MM, Manwaring JH (1996) Temporal dynamics of soil spatial heterogeneity in sagebrush–wheatgrass steppe during a growing season. Plant Soil 184:299–309

    Article  CAS  Google Scholar 

  • Šmilauerová M, Šmilauer P (2002) Morphological responses of plant roots to heterogeneity of soil resources. New Phytol 154:703–712

    Article  Google Scholar 

  • Steele SJ, Gower ST, Vogel JG, Morman JM (1997) Root mass, net primary production and turnover in aspen, jack pine and black spruce forests in Saskatchewan and Manitoba. Canada Tree Physiol 17:577–587

    Article  CAS  Google Scholar 

  • Vogt KA, Persson H (1991) Measuring growth and development of roots. In: Lassoie JP, Hinckley TM (eds) Techniques and Approaches in Forest Tree Ecophysiology. CRC Press, Boca Raton, pp 477–501

    Google Scholar 

  • Wells CE, Eissenstat DM (2001) Marked differences in survivorship among apple roots of different diameters. Ecology 82:882–892

    Article  Google Scholar 

  • Xia MX, Guo DL, Pregitzer KS (2010) Ephemeral root modules in Fraxinus mandshurica. New Phytol 188:1065–1074

    Article  PubMed  Google Scholar 

  • Yuan ZY, Chen HYH (2012) A global analysis of fine root production as affected by soil nitrogen and phosphorus. P Roy Soc B: Biol Sci 279(1743):3796–3802

    Article  CAS  Google Scholar 

  • Zhou Z, Shangguan Z (2007) Vertical distribution of fine roots in relation to soil factors in Pinus tabulaeformis Carr. Forest of the Loess Plateau of China. Plant Soil 291:119–129

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was financially supported by the National Key Basic Research Program of China (2012CB416903), the National Natural Science Foundation of China (31210103920; 31200406; 31260172).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huimin Wang.

Additional information

Responsible Editor: Katja Klumpp.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liao, Y., McCormack, M.L., Fan, H. et al. Relation of fine root distribution to soil C in a Cunninghamia lanceolata plantation in subtropical China. Plant Soil 381, 225–234 (2014). https://doi.org/10.1007/s11104-014-2114-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-014-2114-9

Keywords

Navigation