Skip to main content

Advertisement

Log in

Ecological stoichiometry of N:P:Si in China’s grasslands

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Aims

Understanding ecological stoichiometry of plant nutrients and its relationship with vegetation succession in terrestrial ecosystems is largely limited to nitrogen (N) and phosphorus (P). Despite it being an important element for most grasses, silicon (Si) is usually ignored. We examined ecological stoichiometry of N:P:Si in grasslands.

Methods

We used leaf N, P and Si concentration, climate variables and phylogenic development, life forms, ecotypes, photosynthetic pathway to determine the relationship of N:P:Si ratio distribution with environmental conditions and the succession of grassland communities.

Results

The distribution of N, P and Si varied greatly among the seven types of China’s grasslands as influenced by environmental conditions (e.g. mean annual temperature – MAT) and plant species groups (e.g. phylogeny). Leaf N showed a significant positive correlation with P across all species, while N and P showed significant negative correlations with Si.

Conclusions

Si was less affected by grassland types than N and P. Environmental conditions such as MAT and MAP had a significant influence on the stoichiometry of N, P and Si in grasslands and that temperature had a greater influence than precipitation. The succession of grassland communities may respond to or be influenced by stoichiometry of N, P and Si.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alexandre A, Bouvet M, Abbadie L (2011) The role of savannas in the terrestrial Si cycle: a case-study from Lamto, Ivory Coast. Global Planet Chang 78:162–169

    Article  Google Scholar 

  • Allen AP, Gillooly JF (2009) Towards an integration of ecological stoichiometry and the metabolic theory of ecology to better understand nutrient cycling. Ecol Let 12:369–384

    Article  Google Scholar 

  • Bennett PC, Siegel DI, Hill BM, Glaser PH (1991) Fate of silicate minerals in a peat bog. Geology 19:328–331

    Article  CAS  Google Scholar 

  • Blecker SW, McCulley RL, Chadwick OA, Kelly EF (2006) Biologic cycling of silica across a grassland bioclimosequence. Global Biogeochem Cy 20:1–11

    Article  Google Scholar 

  • Brackhage C, Schaller J, Bäucker E, Dudel EG (2013) Silicon availability affects the stoichiometry and content of calcium and micro nutrients in the jeaves of common reed. Silicon 5:199–204

    Article  CAS  Google Scholar 

  • Carnelli AL, Madella M, Theurillat JP (2001) Biogenic silica production in selected alpine plant species and plant communities. Ann Bot 87:425–434

    Article  CAS  Google Scholar 

  • Chapin FS (1980) The mineral nutrition of wild plants. Ann Rev Ecol Syst 11:233–260

    Article  CAS  Google Scholar 

  • Chen ZZ, Wang SP (2000) Typical steppe ecosystems of China. Science Press, Beijing

    Google Scholar 

  • Conley DJ (2002) Terrestrial ecosystems and the global biogeochemical silica cycle. Global Biogeochem Cy 16:1121. doi:10.1029/2002GB001894

    Article  Google Scholar 

  • Cooke J, Leishman MR (2011) Is plant ecology more siliceous than we realise? Trends Plant Sci 16:61–68

    Article  CAS  PubMed  Google Scholar 

  • Cooke J, Leishman MR (2012) Tradeoffs between foliar silicon and carbon-based defences: evidence from vegetation communities of contrasting soil types. Oikos 121:2052–2060

    Article  Google Scholar 

  • Degobbis D, Gilmartin M (1990) Nitrogen, phosphorus, and biogenic silicon budgets for the northern Adriatic Sea. Oceanol Acta 13:31–45

    CAS  Google Scholar 

  • Department of Animal Husbandry and Veterinary (1996) Rangeland resources of China. China Agricultural Science and Technology Press, Beijing

    Google Scholar 

  • Derry LA, Kurtz AC, Ziegler K, Chadwick OA (2005) Biological control of terrestrial silica cycling and export fluxes to watersheds. Nature 433:728–731

    Article  CAS  PubMed  Google Scholar 

  • Editorial Committee for Vegetation of China (1980) Vegetation of China. Science Press, Beijing

    Google Scholar 

  • Elser JJ, Fagan WF, Denno RF et al (2000) Nutritional constraints in terrestrial and freshwater foodwebs. Nature 408:578–580

    Article  CAS  PubMed  Google Scholar 

  • Epstein E (1994) The anomaly of silicon in plant biology. Proc Natl Acad Sci U S A 91:11–17

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Garbuzov M, Reidinger S, Hartley SE (2011) Interactive effects of plant-available soil silicon and herbivory on competition between two grass species. Ann Bot 108:1355–1363

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Glibert PM, Heil CA, O’Neil JM, Dennison WC, O’Donohue MJH (2006) Nitrogen, phosphorus, silica, and carbon in Moreton Bay, Queensland, Australia: differential limitation of phytoplankton biomass and production. Estuar Coast 29:209–221

    Article  CAS  Google Scholar 

  • Hall DO, Ojima DS, Parton WJ, Scurlock JMO (1995) Response of temperate and tropical grasslands to CO2 and climate change. J Biogeography 22:537–547

    Article  Google Scholar 

  • Han W, Fang J, Guo D, Zhang Y (2005) Leaf nitrogen and phosphorus stoichiometry across 753 terrestrial plant species in China. New Phytol 168:377–385

    Article  CAS  PubMed  Google Scholar 

  • Han W, Fang J, Reich PB, Woodward FI, Wang Z (2011) Biogeography and variability of eleven mineral elements in plant leaves across gradients of climate, soil and plant functional type in China. Ecol Let 14:788–796

    Article  CAS  Google Scholar 

  • He J, Fang J, Wang Z, Guo D, Flynn DFB, Geng Z (2006) Stoichiometry and large-scale patterns of leaf carbon and nitrogen in the grassland biomes of China. Oecologia 149:115–122

    Article  PubMed  Google Scholar 

  • He J, Wang L, Flynn DFB, Wang X, Ma W, Fang J (2008) Leaf nitrogen:phosphorus stoichiometry across Chinese grassland biomes. Oecologia 155:301–310

    Article  PubMed  Google Scholar 

  • Hedin LO (2004) Global organization of terrestrial plant–nutrient interactions. Proc Natl Acad Sci U S A 101:10849–10850

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hou XY (1982) Vegetation geography of China and chemical composition of its dominant plants. Science Press of China, Beijing, pp 188–243

    Google Scholar 

  • Jiang BF, Lu RK, Li QK (1986) Map of soil phosphorus potential of China. In: Institute of Soil Science, Academia Sinica, ed. The Soil Atlas of China. Beijing, China: Cartographic Publishing House, 36

  • Jiang C, Yu G, Li Y, Cao G, Yang Z, Sheng W, Yu W (2012) Nutrient resorption of coexistence species in alpine meadow of the Qinghai-Tibetan Plateau explains plant adaptation to nutrient-poor environment. Ecol Engin 44:1–9

    Article  Google Scholar 

  • Kidder DL, Gierlowski-Kordesch EH (2005) Impact of grassland radiation on the nonmarine silica cycle and Miocene diatomite. Palaios 20:198–206

    Article  Google Scholar 

  • Kurtz AC, Derry LA, Chadwick OA (2002) Germanium–silicon fractionation in the weathering environment. Geochim Cosmochim Ac 66:1525–1537

    Article  CAS  Google Scholar 

  • Li Z, Song Z, Jiang P (2013) Biogeochemical sequestration of carbon within phytoliths of wetland plants: A case study of Xixi wetland, China. Chinese Sci Bull 58:1–8

    Article  CAS  Google Scholar 

  • Liang Y, Wong JWC, Wei L (2005) Silicon-mediated enhancement of cadmium tolerance in maize (Zea mays L.) grown in cadmium contaminated soil. Chemosphere 58:475–483

    Article  CAS  PubMed  Google Scholar 

  • Ma J, Wei G, Xu Y, Long W, Sun W (2007) Mobilization and re-distribution of major and trace elements during extreme weathering of basalt in Hainan Island, South China. Geochim Cosmochim Ac 71:3223–3237

    Article  CAS  Google Scholar 

  • McNaughton SJ, Tarrants JL (1983) Grass leaf silicification: Natural selection for an inducible defense against herbivores. Proc Natl Acad Sci U S A 80:790–791

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Michaels AF (2003) The ratios of life. Science 300:906–907

    Article  CAS  Google Scholar 

  • Mortlock RA, Froelich PN (1989) A simple method for the rapid determination of biogenic opal in pelagic marine sediments. Deep Sea Res 36:1415–1426

    Article  CAS  Google Scholar 

  • Murphy J, Riley JP (1962) A modified single solution for the determination of phosphorus in natural waters. Anal Chim Acta 27:31–36

    Article  CAS  Google Scholar 

  • Natori Y (2007) Re-evaluation on biogeochemical cycling and stoichiometry of nitrogen, phosphorus and silicon in the ocean. - ir.lib.shizuoka.ac.jp

  • Niklas KJ, Owens T, Reich PB, Cobb ED (2005) Nitrogen/phosphorus leaf stoichiometry and the scaling of plant growth. Ecol Let 8:636–642

    Article  Google Scholar 

  • Osborne CP (2008) Atmosphere, ecology and evolution: what drove the miocene expansion of C4 grasslands? J Ecol 96:35–45

    PubMed Central  PubMed  Google Scholar 

  • Planavsky NJ, Rouxel OJ, Bekker A, Lalonde SV, Konhauser KO, Reinhard CT, Lyons TW (2010) The evolution of the marine phosphate reservoir. Nature 467:1088–1090

    Article  CAS  PubMed  Google Scholar 

  • Reich PB, Walters MB, Ellsworth DS (1997) From tropics to tundra: global convergence in plant functioning. Proc Natl Acad Sci U S A 94:13730–13734

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Reich PB, Oleksyn J (2004) Global patterns of plant leaf N and P in relation to temperature and latitude. Proc Natl Acad Sci U S A 101:11001–11006

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rodrigues FÁ, Vale FXR, Korndörfer GH, Prabhu AS, Datnoff LE, Oliveira AMA, Zambolim L (2003) Influence of silicon on sheath blight of rice in Brazil. Crop Prot 22:23–29

    Article  CAS  Google Scholar 

  • Schaller J, Brackhage C, Gessner MO, Bäuker E, Dudel EG (2012a) Silicon supply modifies C:N:P stoichiometry and growth of Phragmites australis. Plant Biol 14:392–396

    Article  CAS  PubMed  Google Scholar 

  • Schaller J, Brackhage C, Dudel EG (2012b) Silicon availability changes structural carbon ratio and phenol content of grasses. Environ Exp Bot 77:283–287

    Article  CAS  Google Scholar 

  • Schoelynck J, Bal K, Backx H, Okruszko T, Meire P, Struyf E (2010) Silica uptake in aquatic and wetland macrophytes: a strategic choice between silica, lignin and cellulose? New Phyt 186:385–391

    Article  CAS  Google Scholar 

  • Scurlock JMO, Hall DO (1998) The global carbon sink: a grassland perspective. Global Change Biol 4:229–233

    Article  Google Scholar 

  • Song Z, Liu H, Si Y, Yin Y (2012) The production of phytoliths in the grasslands of China: implications to biogeochemical sequestration of atmospheric CO2. Global Change Biol 18:3647–3653

    Article  Google Scholar 

  • Struyf E, Smis A, Van Damme S, Meire P, Conley DJ (2009) The global biogeochemical silicon cycle. Silicon 1:207–213

    Article  CAS  Google Scholar 

  • Struyf E, Conley DJ (2012) Emerging understanding of the ecosystem silica filter. Biogeochem 107:9–18

    Article  CAS  Google Scholar 

  • Teubner K, Dokulil M (2002) Ecological stoichiometry of TN:TP:SRSi in freshwaters: nutrient ratios and seasonal shifts in phytoplankton assemblages. Arch Hydrobiol 625–646

  • Tuna L, Kaya C, Higgs D, Murillo-Amador B, Aydemir S, Girgin AR (2008) Silicon improves salinity tolerance in wheat plants. Environ Exp Bot 62:10–16

    Article  CAS  Google Scholar 

  • Vandevenne F, Struyf E, Clymans W, Meire P (2012) Agricultural silica harvest: have humans created a new loop in the global silica cycle? Front Ecol Environ 10(5):243–248

    Article  Google Scholar 

  • Zavaleta ES, Shaw MR, Chiariello NR, Thomas BD, Cleland EE, Field CB, Mooney AHA (2003) Grassland responses to three years of elevated temperature, CO2, precipitation, and N deposition. Ecol Monogr 73:585–604

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful for support from National Natural Science Foundation of China (Grant No. 41103042), Training Program for the Top Young Talents of Zhejiang Agicultural and Forestry University, Frontier Project of Institute of Geochemistry, Chinese Academy of Sciences, Opening Fund of Tianjin Key Laboratory of Water Resources and Environment (52XS1202). The authors have declared no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhaoliang Song or Hongyan Liu.

Additional information

Responsible Editor: Hans Lambers.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 398 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Song, Z., Liu, H., Zhao, F. et al. Ecological stoichiometry of N:P:Si in China’s grasslands. Plant Soil 380, 165–179 (2014). https://doi.org/10.1007/s11104-014-2084-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-014-2084-y

Keywords

Navigation