Skip to main content
Log in

Nitrogen availability affects hydraulic conductivity of rice roots, possibly through changes in aquaporin gene expression

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Background and aims

Nitrogen (N) availability affects water uptake from the roots, which decreases upon N deprivation and increases upon resupply. The aim of this study was to reveal possible mechanisms of regulation of water transport in roots through physiological and morphological adaptations to N availability.

Methods

The effects of continuous N deprivation and following resupply on root morphology, osmotic hydraulic conductivity, and expression of genes for aquaporins (water channels) were examined in rice (Oryza sativa L.) plants. The effect of local N availability was examined by using a split-root system.

Results

N deprivation decreased the expression of root-specific aquaporin genes, whereas N resupply increased their expression. Changes in aquaporin gene expression were correlated with changes in hydraulic conductivity. N deprivation increased dry matter allocation to the roots. In a split-root experiment, the expression of root-specific aquaporin genes was down-regulated in the N-deprived half, whereas it was up-regulated in the N-supplied half.

Conclusion

Our results suggest that expression of genes for root-specific aquaporins underlies the changes in conductivity during continuous N deprivation and resupply. Rice plants seem to adapt to N availability through coordinated adjustment of root proliferation and abundance of aquaporins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

AMT:

Ammonia transporter

ΔΨs :

Difference in osmotic potential between the exuded xylem sap and the hydroponic solution.

GOGAT:

Glutamate synthase

GS:

Glutamine synthetase

NR:

Nitrate reductase

NRT:

Nitrate transporter

Lp r(os):

Osmotic hydraulic conductivity

PIP:

Plasma membrane intrinsic protein

σ:

Reflection coefficient for nutrient salts in the xylem

TIP:

Tonoplast intrinsic protein

J v :

Volumetric xylem sap flow rate per unit root surface area

References

  • Ahamed A, Murai-Hatano M, Ishikawa-Sakurai J, Hayashi H, Kawamura Y, Uemura M (2012) Cold stress-induced acclimation in rice is mediated by root-specific aquaporins. Plant Cell Physiol 53:1445–1456

    Article  CAS  PubMed  Google Scholar 

  • Aharon R, Shahak Y, Wininger S, Bendov R, Kapulnik Y, Galili G (2003) Overexpression of a plasma membrane aquaporin in transgenic tobacco improves plant vigor under favorable growth conditions but not under drought or salt stress. Plant Cell 15:439–447

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Araki R, Hasegawa H (2006) Expression of rice (Oryza sativa L.) genes involved in high-affinity nitrate transport during the period of nitrate induction. Breed Sci 56:295–302

    Article  CAS  Google Scholar 

  • Cai H, Lu Y, Xie W, Zhu T, Lian X (2012) Transcriptome response to nitrogen starvation in rice. J Biosci 37:731–747

    Article  CAS  PubMed  Google Scholar 

  • Carvajal M, Cooke DT, Clarkson DT (1996) Responses of wheat plants to nutrient deprivation may involve the regulation of water-channel function. Planta 199:372–381

    Article  CAS  Google Scholar 

  • Chapin FS, Walter CHS, Clarkson DT (1988) Growth response of barley and tomato to nitrogen stress and its control by abscisic acid, water relations and photosynthesis. Planta 173:352–366

    Article  CAS  PubMed  Google Scholar 

  • Clarkson DT, Carvajal M, Henzler T, Waterhouse RN, Smyth AJ, Cooke DT, Stuedle E (2000) Root hydraulic conductance: diurnal aquaporin expression and the effects of nutrient stress. J Exp Bot 51:61–70

    Article  CAS  PubMed  Google Scholar 

  • di Pietro M, Vialaret J, Li G-W, Hem S, Prado K, Rossignol M, Maurel C, Santoni V (2013) Coordinated post-translational reponses of aquaporins to abiotic and nutritional stimuli in Arabidopsis roots. Mol Cell Proteomics 12:3886–3897

    Article  PubMed  Google Scholar 

  • Fan X, Jia L, Li Y, Smith SJ, Miller AJ, Shen Q (2007) Comparing nitrate storage and remobilization in two rice cultivars that differ in their nitrogen use efficiency. J Exp Bot 58:1729–1740

    Article  CAS  PubMed  Google Scholar 

  • Feng H, Yan M, Fan X, Li B, Shen Q, Miller AJ, Xu G (2011) Spatial expression and regulation of rice high-affinity nitrate transporters by nitrogen and carbon status. J Exp Bot 62:2319–2332

    Article  CAS  PubMed  Google Scholar 

  • Gloser V, Zwieniecki MA, Orians CM, Holbrook NM (2007) Dynamic changes in root hydraulic properties in response to nitrate availability. J Exp Bot 58:2409–2415

    Article  CAS  PubMed  Google Scholar 

  • Gorska A, Ye Q, Holbrook NM, Zwieniecki MA (2008a) Nitrate control of root hydraulic properties in plants: translating local information to whole plant response. Plant Physiol 148:1159–1167

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gorska A, Zwieniecka A, Holbrook NM, Zwieniecki MA (2008b) Nitrate induction of root hydraulic conductivity in maize is not correlated with aquaporin expression. Planta 228:989–998

    Article  CAS  PubMed  Google Scholar 

  • Goto S, Akagawa T, Kojima S, Hayakawa T, Yamaya T (1998) Organization and structure of NADH-dependent glutamate synthase gene from rice plants. Biochim Biophys Acta 1387:298–308

    Article  CAS  PubMed  Google Scholar 

  • Ishiyama K, Inoue E, Tabuchi M, Yamaya T, Takahashi H (2004) Biochemical background and compartmentalized functions of cytosolic glutamine synthetase for active ammonium assimilation in rice roots. Plant Cell Physiol 45:1640–1647

    Article  CAS  PubMed  Google Scholar 

  • Javot H, Lauvergeat V, Santoni V et al (2003) Role of a single aquaporin isoform in root water uptake. Plant Cell 15:509–522

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Katsuhara M, Koshio K, Shibasaka M, Hayashi Y, Hayakawa T, Kasamo K (2003) Over-expression of a barley aquaporin increased the shoot/root ratio and raised salt sensitivity in transgenic rice plants. Plant Cell Physiol 44:1378–1383

    Article  CAS  PubMed  Google Scholar 

  • Kuwagata T, Ishikawa-Sakurai J, Hayashi H, Nagasuga K, Fukushi K, Ahamed A, Takasugi K, Katsuhara M, Murai-Hatano M (2012) Influence of low air humidity and low root temperature on water uptake, growth and aquaporin expression in rice plants. Plant Cell Physiol 53:1418–1431

    Article  CAS  PubMed  Google Scholar 

  • Maurel C, Verdoucq L, Luu DT, Santoni V (2008) Plant aquaporins: membrane channels with multiple integrated functions. Annu Rev Plant Biol 59:595–624

    Article  CAS  PubMed  Google Scholar 

  • Miller AJ, Cramer MD (2004) Root nitrogen acquisition and assimilation. Plant Soil 274:1–36

    Article  Google Scholar 

  • Miyamoto N, Stuedle E, Hirasawa T, Lafitte R (2001) Hydraulic conductivity of rice roots. J Exp Bot 52:1835–1846

    Article  CAS  PubMed  Google Scholar 

  • Murai-Hatano M, Kuwagata T, Sakurai J, Nonami H, Ahamed A, Nagasuga K, Matsunami T, Fukushi K, Maeshima M, Okada M (2008) Effect of low root temperature on hydraulic conductivity of rice plants and the possible role of aquaporins. Plant Cell Physiol 49:1294–1305

    Article  CAS  PubMed  Google Scholar 

  • Radin JW, Ackerson RC (1981) Water relations of cotton plants under nitrogen deficiency. Plant Physiol 67:115–119

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Radin JW, Boyer JS (1982) Control of leaf expansion by nitrogen nutrition in sunflower plants. Plant Physiol 69:771–775

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sakurai J, Ishikawa F, Yamaguchi T, Uemura M, Maeshima M (2005) Identification of 33 rice aquaporin genes and analysis of their expression and function. Plant Cell Physiol 46:1568–1577

    Article  CAS  PubMed  Google Scholar 

  • Sakurai J, Ahamed A, Murai M, Maeshima M, Uemura M (2008) Tissue and cell-specific localization of rice aquaporins and their water transport activities. Plant Cell Physiol 49:30–39

    Article  CAS  PubMed  Google Scholar 

  • Sakurai-Ishikawa J, Murai-Hatano M, Hayashi H, Ahamed A, Fukushi K, Matsumoto T, Kitagawa Y (2011) Transpiration from shoots triggers diurnal changes in root aquaporin expression. Plant Cell Environ 34:1150–1163

    Article  CAS  PubMed  Google Scholar 

  • Siefritz F, Tyree MT, Lovisolo C, Schubert A, Kaldenhoff R (2002) PIP1 plasma membrane aquaporins in tobacco: from cellular effects to function in plants. Plant Cell 14:869–876

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sonoda Y, Ikeda A, Saiki S, von Wiren N, Yamaya T, Yamaguchi J (2003) Distinct expression and function of three ammonium transporter genes (OsAMT1;11;3) in rice. Plant Cell Physiol 44:726–734

    Article  CAS  PubMed  Google Scholar 

  • Stitt M (1999) Nitrate regulation of metabolism and growth. Curr Opin Plant Biol 2:178–186

    Article  CAS  PubMed  Google Scholar 

  • Tinker PB, Nye PH (2000) Solute movement in the rhizosphere. Oxford University Press, New York

    Google Scholar 

  • Wang Y-H, Garvin DF, Kochian LV (2001) Nitrate-induced genes in tomato roots. Array analysis reveals novel genes that may play a role in nitrogen nutrition. Plant Physiol 127:345–359

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wang R, Okamoto M, Xing X, Crawford NM (2003) Microarray analysis of the nitrate response in Arabidopsis roots and shoots reveals over 1,000 rapidly responding genes and new linkages to glucose, trehalose-6-phosphate, iron, and sulfate metabolism. Plant Physiol 132:556–567

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yao S-G, Sonoda Y, Tsutsui T, Nakamura H, Ichikawa H, Ikeda, Yamaguchi J (2008) Promoter analysis of OsAMT1;2 and OsAMT1;3 implies their distinct roles in nitrogen utilization in rice. Breed Sci 58:201–207

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to Dr. Kensaku Suzuki (NARO Tohoku Agricultural Research Center) for critically reading the manuscript and his helpful discussion. We also thank Prof. Matsuo Uemura (Iwate University) and Dr. Yukio Kawamura (Iwate University) for providing an opportunity to use their osmometer. This work was supported by JSPS KAKENHI Grant Number 21780235.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junko Ishikawa-Sakurai.

Additional information

Responsible Editor: Ad C. Borstlap.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Table S1

(DOC 36 kb)

Table S2

(DOC 36 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ishikawa-Sakurai, J., Hayashi, H. & Murai-Hatano, M. Nitrogen availability affects hydraulic conductivity of rice roots, possibly through changes in aquaporin gene expression. Plant Soil 379, 289–300 (2014). https://doi.org/10.1007/s11104-014-2070-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-014-2070-4

Keywords

Navigation